Android UI层的刷新界面数据和SurfaceFlinger将显示数据刷新到屏幕,都依赖VSYNC信号。
VSYNC信号来自LCD模块,先看一下SurfaceFlinger加载LCD模块生成VSYNC信号回调到SurfaceFlinger的过程。
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
status_t err;
Mutex::Autolock _l(mStateLock);
....
// Initialize the H/W composer object. There may or may not be an
// actual hardware composer underneath.
mHwc = new HWComposer(this,
*static_cast(this));
// First try to get an ES2 config
err = selectEGLConfig(mEGLDisplay, mHwc->getVisualID(), EGL_OPENGL_ES2_BIT,
&mEGLConfig);
if (err != NO_ERROR) {
// If ES2 fails, try ES1
err = selectEGLConfig(mEGLDisplay, mHwc->getVisualID(),
EGL_OPENGL_ES_BIT, &mEGLConfig);
}
if (err != NO_ERROR) {
// still didn't work, probably because we're on the emulator...
// try a simplified query
ALOGW("no suitable EGLConfig found, trying a simpler query");
err = selectEGLConfig(mEGLDisplay, mHwc->getVisualID(), 0, &mEGLConfig);
}
if (err != NO_ERROR) {
// this EGL is too lame for android
LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
}
....
// initialize our non-virtual displays
for (size_t i=0 ; iisConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
// All non-virtual displays are currently considered secure.
bool isSecure = true;
createBuiltinDisplayLocked(type);
wp token = mBuiltinDisplays[i];
sp bq = new BufferQueue(new GraphicBufferAlloc());
sp fbs = new FramebufferSurface(*mHwc, i, bq);
sp hw = new DisplayDevice(this,
type, allocateHwcDisplayId(type), isSecure, token,
fbs, bq,
mEGLConfig);
if (i > DisplayDevice::DISPLAY_PRIMARY) {
// FIXME: currently we don't get blank/unblank requests
// for displays other than the main display, so we always
// assume a connected display is unblanked.
ALOGD("marking display %d as acquired/unblanked", i);
hw->acquireScreen();
}
mDisplays.add(token, hw);
}
}
// make the GLContext current so that we can create textures when creating Layers
// (which may happens before we render something)
getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
// start the EventThread
sp vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
vsyncPhaseOffsetNs, true);
mEventThread = new EventThread(vsyncSrc);
sp sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
sfVsyncPhaseOffsetNs, false);
mSFEventThread = new EventThread(sfVsyncSrc);
mEventQueue.setEventThread(mSFEventThread);
mEventControlThread = new EventControlThread(this);
mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
// set a fake vsync period if there is no HWComposer
if (mHwc->initCheck() != NO_ERROR) {
mPrimaryDispSync.setPeriod(16666667);
}
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
// start boot animation
startBootAnim();
}
在HWC的构造函数中会加载HWC模块
....
HWComposer::HWComposer(
const sp& flinger,
EventHandler& handler)
: mFlinger(flinger),
mFbDev(0), mHwc(0), mNumDisplays(1),
mCBContext(new cb_context),
mEventHandler(handler),
mDebugForceFakeVSync(false)
{
....
// Note: some devices may insist that the FB HAL be opened before HWC.
int fberr = loadFbHalModule();
loadHwcModule();
if (mFbDev && mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// close FB HAL if we don't needed it.
// FIXME: this is temporary until we're not forced to open FB HAL
// before HWC.
framebuffer_close(mFbDev);
mFbDev = NULL;
}
// If we have no HWC, or a pre-1.1 HWC, an FB dev is mandatory.
if ((!mHwc || !hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
&& !mFbDev) {
ALOGE("ERROR: failed to open framebuffer (%s), aborting",
strerror(-fberr));
abort();
}
// these display IDs are always reserved
for (size_t i=0 ; i> 24) & 0xff,
(hwcApiVersion(mHwc) >> 16) & 0xff);
if (mHwc->registerProcs) {
mCBContext->hwc = this;
mCBContext->procs.invalidate = &hook_invalidate;
mCBContext->procs.vsync = &hook_vsync;
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
mCBContext->procs.hotplug = &hook_hotplug;
else
mCBContext->procs.hotplug = NULL;
memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero));
mHwc->registerProcs(mHwc, &mCBContext->procs);
}
// don't need a vsync thread if we have a hardware composer
needVSyncThread = false;
// always turn vsync off when we start
eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0);
// the number of displays we actually have depends on the
// hw composer version
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) {
// 1.3 adds support for virtual displays
mNumDisplays = MAX_HWC_DISPLAYS;
} else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// 1.1 adds support for multiple displays
mNumDisplays = NUM_BUILTIN_DISPLAYS;
} else {
mNumDisplays = 1;
}
}
if (mFbDev) {
ALOG_ASSERT(!(mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)),
"should only have fbdev if no hwc or hwc is 1.0");
DisplayData& disp(mDisplayData[HWC_DISPLAY_PRIMARY]);
disp.connected = true;
disp.width = mFbDev->width;
disp.height = mFbDev->height;
disp.format = mFbDev->format;
disp.xdpi = mFbDev->xdpi;
disp.ydpi = mFbDev->ydpi;
if (disp.refresh == 0) {
disp.refresh = nsecs_t(1e9 / mFbDev->fps);
ALOGW("getting VSYNC period from fb HAL: %lld", disp.refresh);
}
if (disp.refresh == 0) {
disp.refresh = nsecs_t(1e9 / 60.0);
ALOGW("getting VSYNC period from thin air: %lld",
mDisplayData[HWC_DISPLAY_PRIMARY].refresh);
}
} else if (mHwc) {
// here we're guaranteed to have at least HWC 1.1
for (size_t i =0 ; i HWC_HEADER_VERSION) {
ALOGE("%s device version %#x unsupported, will not be used",
HWC_HARDWARE_COMPOSER, mHwc->common.version);
hwc_close_1(mHwc);
mHwc = NULL;
return;
}
}
....
int hw_get_module_by_class(const char *class_id, const char *inst,
const struct hw_module_t **module)
{
int status;
int i;
const struct hw_module_t *hmi = NULL;
char prop[PATH_MAX];
char path[PATH_MAX];
char name[PATH_MAX];
if (inst)
snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
else
strlcpy(name, class_id, PATH_MAX);
/*
* Here we rely on the fact that calling dlopen multiple times on
* the same .so will simply increment a refcount (and not load
* a new copy of the library).
* We also assume that dlopen() is thread-safe.
*/
/* Loop through the configuration variants looking for a module */
for (i=0 ; iid) != 0) {
ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
status = -EINVAL;
goto done;
}
hmi->dso = handle;
/* success */
status = 0;
done:
if (status != 0) {
hmi = NULL;
if (handle != NULL) {
dlclose(handle);
handle = NULL;
}
} else {
ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
id, path, *pHmi, handle);
}
*pHmi = hmi;
return status;
}
以上dlsym()函数负责加载动态库。然后再通过hwc_open_1()函数调用module库中对应的open函数,也就是hwc_device_open()函数
static inline int hwc_open_1(const struct hw_module_t* module,
hwc_composer_device_1_t** device) {
return module->methods->open(module,
HWC_HARDWARE_COMPOSER, (struct hw_device_t**)device);
}
static inline int hwc_close_1(hwc_composer_device_1_t* device) {
return device->common.close(&device->common);
}
....
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, HWC_HARDWARE_COMPOSER)) {
struct hwc_context_t *dev;
dev = (hwc_context_t*)malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
//Initialize hwc context
initContext(dev);
//Setup HWC methods
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = HWC_DEVICE_API_VERSION_1_2;
dev->device.common.module = const_cast(module);
dev->device.common.close = hwc_device_close;
dev->device.prepare = hwc_prepare;
dev->device.set = hwc_set;
dev->device.eventControl = hwc_eventControl;
dev->device.blank = hwc_blank;
dev->device.query = hwc_query;
dev->device.registerProcs = hwc_registerProcs;
dev->device.dump = hwc_dump;
dev->device.getDisplayConfigs = hwc_getDisplayConfigs;
dev->device.getDisplayAttributes = hwc_getDisplayAttributes;
*device = &dev->device.common;
status = 0;
}
return status;
}
/*
* Save callback functions registered to HWC
*/
static void hwc_registerProcs(struct hwc_composer_device_1* dev,
hwc_procs_t const* procs)
{
ALOGI("%s", __FUNCTION__);
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
ALOGE("%s: Invalid context", __FUNCTION__);
return;
}
ctx->proc = procs;
// Now that we have the functions needed, kick off
// the uevent & vsync threads
init_uevent_thread(ctx);
init_vsync_thread(ctx);
}
void init_vsync_thread(hwc_context_t* ctx)
{
int ret;
pthread_t vsync_thread;
ALOGI("Initializing VSYNC Thread");
ret = pthread_create(&vsync_thread, NULL, vsync_loop, (void*) ctx);
if (ret) {
ALOGE("%s: failed to create %s: %s", __FUNCTION__,
HWC_VSYNC_THREAD_NAME, strerror(ret));
}
}
static void *vsync_loop(void *param)
{
const char* vsync_timestamp_fb0 = "/sys/class/graphics/fb0/vsync_event";
const char* vsync_timestamp_fb1 = "/sys/class/graphics/fb1/vsync_event";
int dpy = HWC_DISPLAY_PRIMARY;
hwc_context_t * ctx = reinterpret_cast(param);
char thread_name[64] = HWC_VSYNC_THREAD_NAME;
prctl(PR_SET_NAME, (unsigned long) &thread_name, 0, 0, 0);
setpriority(PRIO_PROCESS, 0, HAL_PRIORITY_URGENT_DISPLAY +
android::PRIORITY_MORE_FAVORABLE);
const int MAX_DATA = 64;
static char vdata[MAX_DATA];
uint64_t cur_timestamp=0;
ssize_t len = -1;
int fd_timestamp = -1;
int ret = 0;
bool fb1_vsync = false;
bool logvsync = false;
char property[PROPERTY_VALUE_MAX];
if(property_get("debug.hwc.fakevsync", property, NULL) > 0) {
if(atoi(property) == 1)
ctx->vstate.fakevsync = true;
}
if(property_get("debug.hwc.logvsync", property, 0) > 0) {
if(atoi(property) == 1)
logvsync = true;
}
/* Currently read vsync timestamp from drivers
e.g. VSYNC=41800875994
*/
fd_timestamp = open(vsync_timestamp_fb0, O_RDONLY);
if (fd_timestamp < 0) {
// Make sure fb device is opened before starting this thread so this
// never happens.
ALOGE ("FATAL:%s:not able to open file:%s, %s", __FUNCTION__,
(fb1_vsync) ? vsync_timestamp_fb1 : vsync_timestamp_fb0,
strerror(errno));
ctx->vstate.fakevsync = true;
}
do {
if (LIKELY(!ctx->vstate.fakevsync)) {
len = pread(fd_timestamp, vdata, MAX_DATA, 0);
if (len < 0) {
// If the read was just interrupted - it is not a fatal error
// In either case, just continue.
if (errno != EAGAIN &&
errno != EINTR &&
errno != EBUSY) {
ALOGE ("FATAL:%s:not able to read file:%s, %s",
__FUNCTION__,
vsync_timestamp_fb0, strerror(errno));
}
continue;
}
// extract timestamp
const char *str = vdata;
if (!strncmp(str, "VSYNC=", strlen("VSYNC="))) {
cur_timestamp = strtoull(str + strlen("VSYNC="), NULL, 0);
}
} else {
usleep(16666);
cur_timestamp = systemTime();
}
// send timestamp to HAL
if(ctx->vstate.enable) {
ALOGD_IF (logvsync, "%s: timestamp %llu sent to HWC for %s",
__FUNCTION__, cur_timestamp, "fb0");
ctx->proc->vsync(ctx->proc, dpy, cur_timestamp);
}
} while (true);
if(fd_timestamp >= 0)
close (fd_timestamp);
return NULL;
}
if (mHwc->registerProcs) {
mCBContext->hwc = this;
mCBContext->procs.invalidate = &hook_invalidate;
mCBContext->procs.vsync = &hook_vsync;
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
mCBContext->procs.hotplug = &hook_hotplug;
else
mCBContext->procs.hotplug = NULL;
memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero));
mHwc->registerProcs(mHwc, &mCBContext->procs);
}
void HWComposer::hook_vsync(const struct hwc_procs* procs, int disp,
int64_t timestamp) {
cb_context* ctx = reinterpret_cast(
const_cast(procs));
ctx->hwc->vsync(disp, timestamp);
}
void HWComposer::vsync(int disp, int64_t timestamp) {
if (uint32_t(disp) < HWC_NUM_PHYSICAL_DISPLAY_TYPES) {
{
Mutex::Autolock _l(mLock);
// There have been reports of HWCs that signal several vsync events
// with the same timestamp when turning the display off and on. This
// is a bug in the HWC implementation, but filter the extra events
// out here so they don't cause havoc downstream.
if (timestamp == mLastHwVSync[disp]) {
ALOGW("Ignoring duplicate VSYNC event from HWC (t=%lld)",
timestamp);
return;
}
mLastHwVSync[disp] = timestamp;
}
char tag[16];
snprintf(tag, sizeof(tag), "HW_VSYNC_%1u", disp);
ATRACE_INT(tag, ++mVSyncCounts[disp] & 1);
mEventHandler.onVSyncReceived(disp, timestamp);
}
}
void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == 0 && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
....
void SurfaceFlinger::enableHardwareVsync() {
Mutex::Autolock _l(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
在addResyncSample()函数中调用updateModel
bool DispSync::addResyncSample(nsecs_t timestamp) {
Mutex::Autolock lock(mMutex);
size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
mResyncSamples[idx] = timestamp;
if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
mNumResyncSamples++;
} else {
mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
}
updateModelLocked();
if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
resetErrorLocked();
}
if (kIgnorePresentFences) {
// If we don't have the sync framework we will never have
// addPresentFence called. This means we have no way to know whether
// or not we're synchronized with the HW vsyncs, so we just request
// that the HW vsync events be turned on whenever we need to generate
// SW vsync events.
return mThread->hasAnyEventListeners();
}
return mPeriod == 0 || mError > kErrorThreshold;
}
void DispSync::updateModelLocked() {
if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
nsecs_t durationSum = 0;
for (size_t i = 1; i < mNumResyncSamples; i++) {
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
durationSum += mResyncSamples[idx] - mResyncSamples[prev];
}
mPeriod = durationSum / (mNumResyncSamples - 1);
double sampleAvgX = 0;
double sampleAvgY = 0;
double scale = 2.0 * M_PI / double(mPeriod);
for (size_t i = 0; i < mNumResyncSamples; i++) {
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
nsecs_t sample = mResyncSamples[idx];
double samplePhase = double(sample % mPeriod) * scale;
sampleAvgX += cos(samplePhase);
sampleAvgY += sin(samplePhase);
}
sampleAvgX /= double(mNumResyncSamples);
sampleAvgY /= double(mNumResyncSamples);
mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
if (mPhase < 0) {
mPhase += mPeriod;
}
if (kTraceDetailedInfo) {
ATRACE_INT64("DispSync:Period", mPeriod);
ATRACE_INT64("DispSync:Phase", mPhase);
}
// Artificially inflate the period if requested.
mPeriod += mPeriod * mRefreshSkipCount;
mThread->updateModel(mPeriod, mPhase);
}
}
void updateModel(nsecs_t period, nsecs_t phase) {
Mutex::Autolock lock(mMutex);
mPeriod = period;
mPhase = phase;
mCond.signal();
}
然后在DispSync.cpp文件的threadLoop函数中在等待mCond信号完成。
virtual bool threadLoop() {
status_t err;
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
nsecs_t nextEventTime = 0;
while (true) {
Vector callbackInvocations;
nsecs_t targetTime = 0;
{ // Scope for lock
Mutex::Autolock lock(mMutex);
if (mStop) {
return false;
}
if (mPeriod == 0) {
err = mCond.wait(mMutex);
if (err != NO_ERROR) {
ALOGE("error waiting for new events: %s (%d)",
strerror(-err), err);
return false;
}
continue;
}
nextEventTime = computeNextEventTimeLocked(now);
targetTime = nextEventTime;
bool isWakeup = false;
if (now < targetTime) {
err = mCond.waitRelative(mMutex, targetTime - now);
if (err == TIMED_OUT) {
isWakeup = true;
} else if (err != NO_ERROR) {
ALOGE("error waiting for next event: %s (%d)",
strerror(-err), err);
return false;
}
}
now = systemTime(SYSTEM_TIME_MONOTONIC);
if (isWakeup) {
mWakeupLatency = ((mWakeupLatency * 63) +
(now - targetTime)) / 64;
if (mWakeupLatency > 500000) {
// Don't correct by more than 500 us
mWakeupLatency = 500000;
}
if (kTraceDetailedInfo) {
ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
}
}
callbackInvocations = gatherCallbackInvocationsLocked(now);
}
if (callbackInvocations.size() > 0) {
fireCallbackInvocations(callbackInvocations);
}
}
return false;
}
void fireCallbackInvocations(const Vector& callbacks) {
for (size_t i = 0; i < callbacks.size(); i++) {//这里调用下面的代码段中初始化的两个DispSyncSource类对象的onDispSyncEvent回调函数
callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
}
}
void SurfaceFlinger::init() {
...
// start the EventThread
sp vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
vsyncPhaseOffsetNs, true, "app");//这个是VSYNC-app
mEventThread = new EventThread(vsyncSrc);
sp sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
sfVsyncPhaseOffsetNs, true, "sf");//这个是VSYNC-sf
...
}
virtual void onDispSyncEvent(nsecs_t when) {
sp callback;
{
Mutex::Autolock lock(mCallbackMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);//这个就是可以在systrace里边看到的
}
}
if (callback != NULL) {//
callback->onVSyncEvent(when);
}
}
void EventThread::onVSyncEvent(nsecs_t timestamp) {
Mutex::Autolock _l(mLock);
mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC;
mVSyncEvent[0].header.id = 0;
mVSyncEvent[0].header.timestamp = timestamp;
mVSyncEvent[0].vsync.count++;
mCondition.broadcast();
}
看到这里又有一个mCondition,EventThread的threadLoop函数也在等待这个条件。具体看EventThread里边的threadLoop()->waitEvent()函数.
bool EventThread::threadLoop() {
DisplayEventReceiver::Event event;
Vector< sp > signalConnections;
signalConnections = waitForEvent(&event);
// dispatch events to listeners...
const size_t count = signalConnections.size();
for (size_t i=0 ; i& conn(signalConnections[i]);
// now see if we still need to report this event
status_t err = conn->postEvent(event);
if (err == -EAGAIN || err == -EWOULDBLOCK) {
// The destination doesn't accept events anymore, it's probably
// full. For now, we just drop the events on the floor.
// FIXME: Note that some events cannot be dropped and would have
// to be re-sent later.
// Right-now we don't have the ability to do this.
ALOGW("EventThread: dropping event (%08x) for connection %p",
event.header.type, conn.get());
} else if (err < 0) {
// handle any other error on the pipe as fatal. the only
// reasonable thing to do is to clean-up this connection.
// The most common error we'll get here is -EPIPE.
removeDisplayEventConnection(signalConnections[i]);
}
}
return true;
}
conn->postEvent()这个这里就是发vsync信号给对应的连接,目前android有surfaceflinger和Choreographoer两个在等待这个。
status_t EventThread::Connection::postEvent(
const DisplayEventReceiver::Event& event) {
ssize_t size = DisplayEventReceiver::sendEvents(mChannel, &event, 1);
return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
ssize_t DisplayEventReceiver::sendEvents(const sp& dataChannel,
Event const* events, size_t count)
{
return BitTube::sendObjects(dataChannel, events, count);
}
int MessageQueue::cb_eventReceiver(int fd, int events, void* data) {
MessageQueue* queue = reinterpret_cast(data);
return queue->eventReceiver(fd, events);
}
int MessageQueue::eventReceiver(int /*fd*/, int /*events*/) {
ssize_t n;
DisplayEventReceiver::Event buffer[8];
while ((n = DisplayEventReceiver::getEvents(mEventTube, buffer, 8)) > 0) {
for (int i=0 ; idispatchInvalidate();
#else
mHandler->dispatchRefresh();
#endif
break;
}
}
}
return 1;
}
void MessageQueue::Handler::dispatchInvalidate() {
if ((android_atomic_or(eventMaskInvalidate, &mEventMask) & eventMaskInvalidate) == 0) {
mQueue.mLooper->sendMessage(this, Message(MessageQueue::INVALIDATE));
}
}
void MessageQueue::Handler::handleMessage(const Message& message) {
switch (message.what) {
case INVALIDATE:
android_atomic_and(~eventMaskInvalidate, &mEventMask);
mQueue.mFlinger->onMessageReceived(message.what);
break;
case REFRESH:
android_atomic_and(~eventMaskRefresh, &mEventMask);
mQueue.mFlinger->onMessageReceived(message.what);
break;
case TRANSACTION:
android_atomic_and(~eventMaskTransaction, &mEventMask);
mQueue.mFlinger->onMessageReceived(message.what);
break;
}
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::TRANSACTION: {
handleMessageTransaction();
break;
}
case MessageQueue::INVALIDATE: {
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
然后就是通过MessageQueue传递给SurfaceFlinger的onMessageReceived()函数
2. Choregrapher的部分
Choregrapher通过DisplayEventReceiver和NativeDisplayEventReceiver创建connection的过程可以参考http://blog.csdn.net/houliang120/article/details/50958212
最后反正就是从android_view_DisplayEventReceiver.cpp文件的handleEvent()->dispatchVsync()最终同步调用到FrameDisplayEventReceiver的onVsync()然后又异步调用到FrameDisplayEventReceiver的run函数。
看下面的onVsync函数中Message.obtain()函数传了this为参数,所以msg有了callback。在Handler.java的dispatchMessage()函数中可以看到,有了callback之后,就直接调用穿进去的runnable类型的run函数了,也就是FrameDisplayEventReceiver类型的run()函数