1. 搭建虚拟的x86-64 CPU实验平台mykernel 2.0
1.1 实验环境:Ubuntu 18.04.1 LTS
1.2 提前下载好: linux-5.4.34.tar.xz 与 mykernel-2.0_for_linux-5.4.34.patch ,如果要使用命令行下载,可以更换源。
1.3 依次执行以下命令,编译内核和安装 qemu虚拟机:
sudo apt install axel axel -n 20 xz -d linux-5.4.34.tar.xz tar -xvf linux-5.4.34.tar cd linux-5.4.34 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev make defconfig make -j$(nproc) sudo apt install qemu qemu-system-x86_64 -kernel arch/x86/boot/bzImage
此时明显看到:在QEMU窗口中可以看到 my_start_kernel 在执行,同时 my_timer_handler 时钟中断处理程序周期性执行。
1.4 进入linux-5.4.34/mykernel目录下可以看见 mymain.c 与 myinterrupt.c :
1.5 当前有一个虚拟的CPU执行C代码的上下文环境,可以看到 mymain.c 中的代码在不停地执行。同时有一个中断处理程序的上下文环境,周期性地产生的时钟中断信号,能够触发 myinterrupt.c 中的代码。
mymain.c
myinterrupt.c
2. 基于mykernel 2.0编写一个操作系统内核
2.1 编写 mypcb.h 头文件如下:
/* * linux/mykernel/mypcb.h * * Kernel internal PCB types * * Copyright (C) 2013 Mengning * */ #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*2 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ unsigned long stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);
2.2 编写 mymain.c 文件如下:
/* * linux/mykernel/mymain.c * * Kernel internal my_start_kernel * Change IA32 to x86-64 arch, 2020/4/26 * * Copyright (C) 2013, 2020 Mengning * */ #include#include string.h> #include #include #include #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i ) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } int i = 0; void my_process(void) { while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
2.3 编写 myinterrupt.c 文件如下:
/* * linux/mykernel/myinterrupt.c * * Kernel internal my_timer_handler * Change IA32 to x86-64 arch, 2020/4/26 * * Copyright (C) 2013, 2020 Mengning * */ #include#include string.h> #include #include #include #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
2.4 重新编译,并运
3. 简要分析操作系统内核核心功能及运行工作机制
分析核心代码块:
/* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) );
pushq %%rbp\n\t
rbp刚开始指向x1, rsp指向x2,随后将(rsp-8),即(x2-8),并将rbp赋给rsp;
movq %%rsp,%0\n\t
将rsp寄存器的值(x2-8)赋给thread.sp;
movq %2,%%rsp\n\t
将next->thread.sp赋给rsp寄存器里,将原本在rsp指向(x2-8)覆盖,指向y2的位置;
movq $1f,%1\n\t
保存prev进程当前RIP寄存器值到prev->thread.ip;
pushq %3\n\t
有cpu的rsp已经指向next进程的y2地址,并将rsp指向(y2-8)的位置,将next->thread.ip=$1f;
ret\n\t
pop nex进程的堆栈,即将next->thread.ip=$1f pop;
1:\t
地址是$1f
popq %%rbp\n\t
原本rbp指向的pre进程的x1变为指向next进程的y1。
至此进程切换完毕。
参考链接:https://github.com/mengning/mykernel