一个优秀的应用不仅仅是要有吸引人的功能和交互,同时在性能上也有很高的要求。运行Android系统的手机,虽然配置在不断的提升,但仍旧无法和PC相比,无法做到PC那样拥有超大的内存以及高性能的CPU,因此在开发Android应用程序时也不可能无限制的使用CPU和内存,如果对CPU和内存使用不当也会造成应用的卡顿和内存溢出等问题。因此,应用的性能优化对于开发人员有着更高的要求。Android性能优化分为很多种,比较常用的有绘制优化、内存优化、耗电优化和稳定性优化等,这个系列我们就来学习性能优化中的绘制优化。
Android绘制View有三个主要的步骤,分别是measure、layout和draw。关于它们的原理请查看我的文章Android View体系(七)从源码解析View的measure流程和Android View体系(八)从源码解析View的layout和draw流程,这里就不在赘述。measure、layout和draw方法主要是运行在系统的应用框架层,而真正将数据渲染到屏幕上的则是系统Nativie层的SurfaceFlinger服务来完成的。
绘制过程主要是由CPU 来进行Measure、Layout、Record、Execute的数据计算工作,GPU负责栅格化、渲染。CPU和GPU是通过图形驱动层来进行连接的。图形驱动层维护了一个队列,CPU将display list添加到该队列中,这样GPU就可以从这个队列中取出数据进行绘制。
FPS(Frames Per Second)这个名词我想很多同学都知道,它是指画面每秒传输帧数,通俗来讲就是指动画或视频的画面数,最简单的举例就是我们玩游戏时,如果画面在60fps则不会感觉到卡顿,如果低于60fps,比如50fps则会感觉到卡顿,你就可以考虑要换显卡或者采取其他一些措施了。
要想画面保持在60fps,则需要每个绘制时长在16ms以内,如下图所示。
Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染, 如果每次渲染都成功,这样就能够达到流畅的画面所需要的60fps,那什么是VSYNC呢?VSYNC是Vertical Synchronization(垂直同步)的缩写,是一种定时中断,一旦收到VSYNC信号,CPU就开始处理各帧数据。
如果某个操作要花费24ms,这样系统在得到VSYNC信号时无法进行正常的渲染,会发生丢帧。用户会在32ms中看到同一帧的画面,如下图所示。
产生卡顿原因有很多,主要有以下几点:
- 布局Layout过于复杂,无法在16ms内完成渲染。
- 同一时间动画执行的次数过多,导致CPU或GPU负载过重。
- View过度绘制,导致某些像素在同一帧时间内被绘制多次。
- UI线程中做了稍微耗时的操作。
为了解决上述的问题,除了我们要在写代码时要注意外,也可以借助一些工具来分析和解决卡顿问题。
Profile GPU Rendering是Android 4.1系统提供的开发辅助功能,我们可以在开发者选项中打开这一功能,如下图所示。
我们点击Profile GPU Rendering选项并选择On screen as bars即开启Profile GPU Rendering功能。接着屏幕会显示出彩色的柱状图,如下所示。
上面的彩色的图的横轴代表时间,纵轴表示某一帧的耗时。绿色的横线为警戒线,超过这条线则意味着时长超过了16m,尽量要保证垂直的彩色柱状图保持在绿线下面。这些垂直的彩色柱状图代表着一帧,不同颜色的彩色柱状图代表不同的含义:
在Android 6.0中,有更多的颜色被加了进来,如下图所示:
下面来分别介绍它们的含义:
Profile GPU Rendering可以找到渲染有问题的界面,但是想要修复的话,只依赖Profile GPU Rendering是不够的,可以用另一个工具Hierarchy Viewer来查看布局层次和每个View所花的时间,这个工具会在下一篇文章进行介绍。
Systrace是Android4.1中新增的性能数据采样和分析工具。它可帮助开发者收集Android关键子系统(SurfaceFlinger、WindowManagerService等Framework部分关键模块、服务,View体系系统等)的运行信息。Systrace的功能包括跟踪系统的I/O操作、内核工作队列、CPU负载以及Android各个子系统的运行状况等。对于UI显示性能,比如动画播放不流畅、渲染卡顿等问题提供了分析数据。
Systrace跟踪的设备要在Android4.1版本以上,对于Android4.3版本之前和4.3版本之后使用上有点区别,现在也很少有人用Android4.3之前的版本,因此这里只讲Android4.3版本的使用方法。Systrace可以在DDMS上使用,可以使用命令行来使用,也可以在代码中进行跟踪。接下来分别来介绍这三种方式。
在DDMS中使用Systrace
1.首先我们要打开Android Studio的Tool中的Android Device Monitor,并连接手机。
2.点击Systrace按钮进入抓取设置界面,如下图所示。
抓取设置界面可以设置跟踪的时间,以及trace文件输出的地址等内容。如下图所示。
3.设置完成后,我们就来操作的跟踪的过程。跟踪时间结束后,生成trace.html文件。
4.用Chrome打开trace.html文件进行分析。分析的方法,后文会讲到。
用命令行使用Systrace
Android 提供一个python脚本文件 systrace.py,它位于Android SDK 目录 /tools/systrace 中,我们可以执行以下命令来使用Systrace:
$ cd android-sdk/platform-tools/systrace
$ python systrace.py --time=10 -o newtrace.html sched gfx view wm
在代码中使用Systrace
Systrace并不会追踪应用的所有工作,在Android4.3及以上版本的代码中,可以使用Trace类对应用中的具体活动进行追踪。
Android源码中也引用了Trace类,比如RecyclerView:
...
private final Runnable mUpdateChildViewsRunnable = new Runnable() {
public void run() {
if (!mFirstLayoutComplete) {
return;
}
if (mDataSetHasChangedAfterLayout) {
TraceCompat.beginSection(TRACE_ON_DATA_SET_CHANGE_LAYOUT_TAG);
dispatchLayout();
TraceCompat.endSection();
} else if (mAdapterHelper.hasPendingUpdates()) {
TraceCompat.beginSection(TRACE_HANDLE_ADAPTER_UPDATES_TAG);
eatRequestLayout();
mAdapterHelper.preProcess();
if (!mLayoutRequestEaten) {
rebindUpdatedViewHolders();
}
resumeRequestLayout(true);
TraceCompat.endSection();
}
}
};
...
TraceCompat类对Trace类进行了封装,只会在Android4.3及以上版本才会使用Trace类,其中beginSection方法和endSection方法之间的代码会被追踪,endSection方法会只会结束最近的beginSection方法,因此要保证beginSection方法和endSection方法的调用次数要相同。
通过前面的方法生成的trace.html需要用Chrome打开,打开后效果如下图所示。
我们可以使用W键和S键进行放大和缩小,A键和D键进行左右移动。
Alert区域
首先来看Alert区域,这一区域会标记处性能有问题的点,单击叹号图标就可以查看某一个Alert的问题描述,如下所示。
这个Alert指出了View在Measure/Layout时耗费了大量的时间,导致出现jank(同一帧画了多次)。给出的建议是避免在动画播放期间控制布局。
CPU区域
接下来我们来查看CPU区域,每一行代表一个CPU核心和它执行任务的时间片,放大后会看到每个色块代表一个执行的进程,色块的长度代表其执行时间,如下图所示。
图中CPU 0主要执行adbb线程和InputReader线程,CPU 2主要执行了surfaceflinger线程和ordinatorlayout进程中的RenderThread线程,我们点击RenderThread色块,会给出RenderThread的相关信息,如下图所示。
图中给出了当前色块所运行的线程和进程、开启时间和持续时间等信息。
Systrace会给出应用中的Frames分析,每一帧就是一个F圆圈,F圆圈有三种颜色,其中绿色表示Frame渲染流畅,黄色和红色则代表渲染时间超过了16.6ms,其中红的更严重些。我们点击红色F圆圈,会给出该Frame的信息,如下图所示。
从图中可以看出,Frame给出了问题提示:Scheduling delay(调度延迟),当一帧绘制时间超过19ms会触发该提示,更何况这一帧已经有将近40ms了。导致这一问题产生的原因主要是线程在绘制时,在很长一段时间都没有分配到CPU时间片,因此无法继续进行绘制。按m键来高亮该时间段,我们来查看CPU的情况,如下图所示。
可以看出这个时间段中两个CPU都在满负荷运行。至于具体是什么让CPU繁忙,则需要使用Traceview来进行分析。
Alerts总体分析
点开最右边的Alerts按钮会给出Alert的总体分析,如下图所示。
Alerts会给出Alert类型,以及出现的次数。有了这些总体的分析,方便开发者对该时间段的绘制性能有一个整体的大概了解,便于进行下一步分析。
由于Systrace 是以系统的角度返回一些信息,只能为我们提供一个概览,它的深度是有限的,我们可以用它来进行粗略的检查,以便了解大概的情况,但是如果要分析更详细的,比如要找到是什么让CPU繁忙,某些方法的调用次数等,则还要借助另一个工具:Traceview。
TraceView是Android SDK中自带的数据采集和分析工具。一般来说,通过TraceView我们可以得到以下两种数据:
- 单次执行耗时的方法。
- 执行次数多的方法。
要分析Traceview,则首先要得到一个trace文件,trace文件的获取有两种方式,分别是在DDMS中使用和在代码中加入调试语句,下面分别对这两种方式进行介绍。
DDMS中使用
1.首先我们要打开Android Studio的Tool中的Android Device Monitor,并连接手机。
2.选择相应的进程,并单击Start Method Profiling按钮。
3.对应用中需要监控的点进行操作。
4.单击Stop Method Profiling按钮,会自动跳到TraceView视图。
代码中加入调试语句
如果开发中出现不好复现的问题,则需要在代码中添加TraceView监控语句,代码如下所示。
Debug.startMethodTracing();
...
Debug.stopMethodTracing();
在开始监控的地方调用startMethodTracing方法,在需要结束监控的地方调用stopMethodTracing方法。系统会在SD卡中生成trace文件,将trace文件导出并用SDK中的Traceview打开即可。当然不要忘了在manifest中加入
权限。
为了分析Traceview,我们来举一个简单的例子来生成trace文件,这里采用第二种方式:代码中加入调试语句。代码如下所示。
public class CoordinatorLayoutActivity extends AppCompatActivity {
private ViewPager mViewPager;
private TabLayout mTabLayout;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_tab_layout);
Debug.startMethodTracing("test");//1
initView();
...
}
private void initView() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
@Override
protected void onStop() {
super.onStop();
Debug.stopMethodTracing();
}
}
在注释1处调用了startMethodTracing方法开始监控,其中test是生成的trace文件的名称。在initView中我们特意调用sleep方法来做耗时操作。在onStop方法中我们调用了stopMethodTracing方法结束监控。这时会在SD卡根目录生成test.trace文件,我们将该文件导出到桌面,用Traceview来分析test.trace文件,我们在cmd中执行如下语句。
我们进入traceview所在的目录(直接将traceview.bat拖入到cmd中),并执行上图的traceview语句后会弹出Traceview视图,它分为两部分,分别是时间片面板和分析面板,我们先来看时间片面板,如下图所示。
其中x轴代表时间的消耗,单位为ms,y轴代表各个线程。一般会查看色块的长度,明显比较长的方法重点去关注,具体的分析还得看分析面板,如下图所示。
每一列数据的代表的含义如下表所示。
列名 | 含义 |
---|---|
Name | 该线程运行过程中调用的函数名 |
Incl Cpu Time% | 某个方法包括其内部调用的方法所占用CPU时间百分比 |
Excl Cpu Time% | 某个方法不包括其内部调用的方法所占用CPU时间百分比 |
Incl Real Time% | 某个方法包括其内部调用的方法所占用真实时间百分比 |
Excl Real Time% | 某个方法不包括其内部调用的方法所占用真实时间百分比 |
Calls + Recur Calls / Total | 某个方法次数+递归调用次数 |
Cpu Time / Call | 该方法平均占用CPU时间 |
Cpu Time / Call | 该方法平均占用真实时间 |
Incl Cpu Time | 某个方法包括其内部调用的方法所占用CPU时间 |
Excl Cpu Time | 某个方法不包括其内部调用的方法所占用CPU时间 |
Incl Real Time | 某个方法包括其内部调用的方法所占用真实时间 |
Excl Real Time | 某个方法不包括其内部调用的方法所占用真实时间 |
因为我们用sleep方法来进行耗时操作,所以这里我们可以单击Incl Real Time来进行降序排列。其中有很多系统调用的方法,我们来进行一一过滤。最终我们发现了CoordinatorLayoutActivity的initView方法Incl Real Time的时间为1000.493ms,这显然有问题,如下图所示。
从图中我们可以看出是调用sleep方法导致的耗时。关于Traceview还有很多种分析情况,就需要大家在平时进行积累了。
好了关于绘制性能分析,就讲到这,如果觉得不过瘾,本系列的后续文章还有大波的内容会持续向你砸来。
参考资料
《Android群英传 神兵利器》
《Android应用性能优化最佳实践》
http://blog.csdn.net/itachi85/article/details/6857324
http://www.cnblogs.com/sunzn/p/3192231.html
http://blog.csdn.net/androiddevelop/article/details/8223805
http://www.tuicool.com/articles/jMfiUjj
http://www.mobile-open.com/2015/85005.html
欢迎关注我的微信公众号,第一时间获得博客更新提醒,以及更多成体系的Android相关原创技术干货。
扫一扫下方二维码或者长按识别二维码,即可关注。