python 可视化 raw,mhd 格式医学图像数据

目录

  • 源码下载
  • 文件格式
  • simpleITK 读取 mhd 文件
  • 显示每个切片
  • 肺部分割
  • 3D 可视化

源码下载

Download: https://download.csdn.net/download/itnerd/11272030

文件格式

先看看文件夹下的数据文件, .mhd 和 .raw 是成对出现的

import os
root = os.path.join(os.getcwd(),'data\\chestCT_round1_train_part1\\train_part1')
paths = os.listdir(root)
print(paths)

[‘396905.mhd’, ‘396905.raw’, ‘496305.mhd’, ‘496305.raw’, ‘522159.mhd’, ‘522159.raw’, …]

simpleITK 读取 mhd 文件

import SimpleITK as sitk
import matplotlib.pyplot as plt
%matplotlib inline

for path in paths:
    if path.find('mhd')>=0:
        data =sitk.ReadImage(os.path.join(root,path))
        print(data)

sitk.ReadImage(mhd_path) 读取到的数据

Image (000002497CF17750)
  RTTI typeinfo:   class itk::Image
  Reference Count: 1
  Modified Time: 10251
  Debug: Off
  Object Name: 
  Observers: 
    none
  Source: (none)
  Source output name: (none)
  Release Data: Off
  Data Released: False
  Global Release Data: Off
  PipelineMTime: 10224
  UpdateMTime: 10250
  RealTimeStamp: 0 seconds 
  LargestPossibleRegion: 
    Dimension: 3
    Index: [0, 0, 0]
    Size: [512, 512, 57]
  BufferedRegion: 
    Dimension: 3
    Index: [0, 0, 0]
    Size: [512, 512, 57]
  RequestedRegion: 
    Dimension: 3
    Index: [0, 0, 0]
    Size: [512, 512, 57]
  Spacing: [0.59375, 0.59375, 5]
  Origin: [-172, -122.6, -265.75]
  Direction: 
1 0 0
0 1 0
0 0 1

  IndexToPointMatrix: 
0.59375 0 0
0 0.59375 0
0 0 5

  PointToIndexMatrix: 
1.68421 0 0
0 1.68421 0
0 0 0.2

  Inverse Direction: 
1 0 0
0 1 0
0 0 1

  PixelContainer: 
    ImportImageContainer (000002497CEFDE20)
      RTTI typeinfo:   class itk::ImportImageContainer
      Reference Count: 1
      Modified Time: 10247
      Debug: Off
      Object Name: 
      Observers: 
        none
      Pointer: 000002490BAC3040
      Container manages memory: true
      Size: 14942208
      Capacity: 14942208

其中比较有用的信息是 spacing, 代表相邻体素的距离(mm),可以用它来估算连通域的体积。

显示每个切片

        spacing = data.GetSpacing()
        scan = sitk.GetArrayFromImage(data)
        print('spacing: ', spacing)
        print('# slice: ', len(scan))
        plot_ct_scan(scan)

spacing: (0.59375, 0.59375, 5.0)
# slice: 57

关键代码

def plot_ct_scan(scan, num_column=4, jump=1):
    num_slices = len(scan)
    num_row = (num_slices//jump + num_column - 1) // num_column
    f, plots = plt.subplots(num_row, num_column, figsize=(num_column*5, num_row*5))
    for i in range(0, num_row*num_column):
        plot = plots[i % num_column] if num_row == 1 else plots[i // num_column, i % num_column]        
        plot.axis('off')
        if i < num_slices//jump:
            plot.imshow(scan[i*jump], cmap=plt.cm.bone) 

肺部分割

首先自然想到 阈值分割,看看 HU 值分布,最小值是边角的黑色区域,
而且肺部和它周边区域可以用阈值 -400 分开python 可视化 raw,mhd 格式医学图像数据_第1张图片

from skimage.segmentation import clear_border
from skimage.measure import label,regionprops, perimeter
from skimage.morphology import ball, disk, dilation, binary_erosion, remove_small_objects, erosion, closing, reconstruction, binary_closing
from skimage.filters import roberts, sobel
from scipy import ndimage as ndi
import scipy.ndimage


def get_segmented_lungs(im, spacing, threshold=-400):
    
    '''
    This funtion segments the lungs from the given 2D slice.
    '''
    '''
    Step 1: Convert into a binary image. 
    '''
    binary = im < threshold

    '''
    Step 2: Remove the blobs connected to the border of the image.
    '''
    cleared = clear_border(binary)

    '''
    Step 3: Label the image.
    '''
    label_image = label(cleared)
    
    '''
    Step 4: Keep the labels with 2 largest areas.
    '''
    areas = [r.area for r in regionprops(label_image)]
    areas.sort()
    if len(areas) > 2:
        for region in regionprops(label_image):
            if region.area < areas[-2]:
                for coordinates in region.coords:                
                       label_image[coordinates[0], coordinates[1]] = 0
    binary = label_image > 0

    '''
    Step 5: Erosion operation with a disk of radius 2. This operation is 
    seperate the lung nodules attached to the blood vessels.
    '''
    selem = disk(2)
    binary = binary_erosion(binary, selem)

    '''
    Step 6: Closure operation with a disk of radius 10. This operation is 
    to keep nodules attached to the lung wall.
    '''
    selem = disk(10)
    binary = binary_closing(binary, selem)

    edges = roberts(binary)
    binary = ndi.binary_fill_holes(edges)

    return binary

    
path = paths[0]
data = sitk.ReadImage(os.path.join(root,path))
spacing = data.GetSpacing()
scan = sitk.GetArrayFromImage(data)
print(scan.shape[0])

mask = np.array([get_segmented_lungs(slice.copy(), spacing) for slice in scan])
scan[~mask] = 0
plot_ct_scan(scan, jump=1)

分割结果

优化

from skimage import measure
def extract_main(mask, spacing, vol_limit=[0.68, 8.2]):
    
    voxel_vol = spacing[0]*spacing[1]*spacing[2]

    label = measure.label(mask, connectivity=1)

    properties = measure.regionprops(label)

    for prop in properties:
            if prop.area * voxel_vol < vol_limit[0] * 1e6 or prop.area * voxel_vol > vol_limit[1] * 1e6:
                mask[label == prop.label] = 0
                
    return mask

mask = extract_main(mask, spacing)
scan[~mask] = 0
plot_ct_scan(scan, jump=1)

3D 可视化

import numpy as np
from skimage import measure, feature
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection

def plot_3d(image, threshold=-400):
    
    # Position the scan upright, 
    # so the head of the patient would be at the top facing the camera
    p = image.transpose(2,1,0)
    # p = p[:,:,::-1]
    
    verts,faces = measure.marching_cubes_classic(p, threshold)

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111, projection='3d')

    # Fancy indexing: `verts[faces]` to generate a collection of triangles
    mesh = Poly3DCollection(verts[faces], alpha=0.1)
    face_color = [0.5, 0.5, 1]
    mesh.set_facecolor(face_color)
    ax.add_collection3d(mesh)

    ax.set_xlim(0, p.shape[0])
    ax.set_ylim(0, p.shape[1])
    ax.set_zlim(0, p.shape[2])

    plt.show()
    
plot_3d(scan)

python 可视化 raw,mhd 格式医学图像数据_第2张图片

你可能感兴趣的:(#,图像处理与计算机视觉,#,数据可视化)