20170924MapReduce学习总结

Map过程

IntWritable one = new IntWritable(1);
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String []res=value.toString().split("\t");
String url=res[28];
context.write(new Text(url), one);
} 

Reduce过程

public void reduce(Text key, Iterable values,  
            Context context) throws IOException, InterruptedException{
int sum = 0;
        for(IntWritable value:values){
            sum+=value.get();
        }
        context.write(new Text(key.toString()+":"+sum),NullWritable.get());
} 

job过程

public static void main(String[] args) throws Exception{
    Configuration conf =new Configuration();
    Job job= Job.getInstance(conf,"Pv");
    job.setJarByClass(PvUvjob.class);
    Path in=new Path("/user/input/pv");
    Path out=new Path("/user/output/pv");

    FileInputFormat.addInputPath(job, in);
    FileOutputFormat.setOutputPath(job, out);
    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);
    job.setMapperClass(PvUvMap.class);
    job.setReducerClass(PvUvReduce.class);
    //map输出类型
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    //reduce 输出类型
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(NullWritable.class);
    job.setNumReduceTasks(1);
    job.waitForCompletion(true);
}

你可能感兴趣的:(实训总结)