import dgl
import numpy as np
def build_karate_club_graph():
# All 78 edges are stored in two numpy arrays. One for source endpoints
# while the other for destination endpoints.
src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
31, 32])
# Edges are directional in DGL; Make them bi-directional.
#做两次数据组合 组成u,v 这样将u和v填充进去得到的就是一个双向无向图
u = np.concatenate([src, dst])
v = np.concatenate([dst, src])
# Construct a DGLGraph
return dgl.DGLGraph(graph_data=(u, v))
G=build_karate_club_graph()
import networkx as nx
# Since the actual graph is undirected, we convert it for visualization
# purpose.
#转为无向图
nx_G=G.to_networkx().to_undirected()
# Kamada-Kawaii layout usually looks pretty for arbitrary graphs
#使用Kamada-Kawai路径长度代价函数定位节点
pos = nx.kamada_kawai_layout(G=nx_G)#一个布局,作图方式让节点画出来在图上更直观
#nx.spring_layout(nx_G)
nx.draw(G=nx_G, pos=pos, with_labels=True, node_color=[[.2, .8, .2]])
# In DGL, you can add features for all nodes at once, using a feature tensor that
# batches node features along the first dimension. The code below adds the learnable
# embeddings for all nodes:
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
embed = nn.Embedding(34, 5) # 34 nodes with embedding dim equal to 5
Graph=build_karate_club_graph()
Graph.ndata['feature']=embed.weight#给节点赋予初始的特征向量
#查看节点的特征
# Graph.nodes[0].data['feature']
# Graph.ndata['feature'][2]
print(Graph.ndata['feature'][[2,3]])
#定义GCN模块
from dgl.nn.pytorch import GraphConv
#包含两层gcn的深度gcn模块
class GCN(nn.Module):
def __init__(self, in_feats, hidden_size, num_classes):
super(GCN, self).__init__()
self.conv1 = GraphConv(in_feats, hidden_size)
self.conv2 = GraphConv(hidden_size, num_classes)
def forward(self, g, inputs):
h = self.conv1(g, inputs)#输入g应该是邻接矩阵(或者是原始的能被识别的图),inputs应该是特征矩阵,这里可以是Graph.ndata
h = torch.relu(h)
h = self.conv2(g, h)
return h
# The first layer transforms input features of size of 5 to a hidden size of 5.
# The second layer transforms the hidden layer and produces output features of
# size 2, corresponding to the two groups of the karate club.
net=GCN(5,5,2)#定义网络结构
#数据表示和初始化
inputs=Graph.ndata['feature']#要输入的特征矩阵
labeled_nodes = torch.tensor([0, 33]) #半监督学习,只有0号和33号节点有标签
labels = torch.tensor([0, 1])#给0和33号节点赋予0 1标签
#训练和可视化
# 1、创建优化器
# 2、将输入填充到模型中
# 3、计算loss
# 4、优化反向传播
import itertools
optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01)
all_logits = []
for epoch in range(50):
logits = net(G, inputs)
# print(epoch," logits:",logits)
# we save the logits for visualization later
all_logits.append(logits.detach())#阻断反向传播
#用log_softmax更稳定,速度也更快 损失函数的定义
logp = F.log_softmax(input=logits, dim=1)#input是经过GCN输出的每一个节点的特征表示向量 dim=1表示在列上做log_softmax计算
# we only compute loss for labeled nodes
loss = F.nll_loss(logp[labeled_nodes], labels)#利用损失函数 对有标签节点进行loss计算
optimizer.zero_grad()#梯度清零
loss.backward()#反向传播
optimizer.step()#参数更新到每一步
print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))
len(all_logits)#两层嵌套循环 外层长度为50,代表50次循环迭代
print(len(all_logits[0]))#这是内层循环 得到的是每次循环34个节点的输出特征表示向量
#因为这个模型 最后输出的节点的特征表示是2维的特征表示 所以可以用一个2D空间里来可视化模型的训练过程
import matplotlib.animation as animation
import matplotlib.pyplot as plt
%matplotlib notebook
#参数i代表第几次迭代循环
def draw(i):
cls1color = '#00FFFF'
cls2color = '#FF00FF'
pos = {}
colors = []
for v in range(34):
pos[v] = all_logits[i][v].numpy()
#返回每行或每列最大值的索引
cls = pos[v].argmax()#输出哪一个索引位置 对应的值最大,这里是二维,只有(0 1)两个索引 正好用于二分类
colors.append(cls1color if cls else cls2color)
ax.cla()#Clear axis即清除当前图形中的当前活动轴。其他轴不受影响。
ax.axis('off')
ax.set_title('Epoch: %d' % i)
#=nx.kamada_kawai_layout(G.to_networkx().to_undirected())
nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
with_labels=True, node_size=300, ax=ax)
fig = plt.figure(dpi=150)
fig.clf()#Clear figure清除所有轴,但是窗口打开,这样它可以被重复使用
ax = fig.subplots()
ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=500)#制作动画
draw(0)