使用ElasticSearch+LogStash+Kibana+Redis搭建日志管理服务

http://nkcoder.github.io/blog/20141031/elkr-log-platform-deploy/


1. 日志平台的结构示意图

说明:

  • 多个独立的agent(Shipper)负责收集不同来源的数据,一个中心agent(Indexer)负责汇总和分析数据,在中心agent前的Broker(使用redis实现)作为缓冲区,中心agent后的ElasticSearch用于存储和搜索数据,前端的Kibana提供丰富的图表展示。
  • Shipper表示日志收集,使用LogStash收集各种来源的日志数据,可以是系统日志、文件、redis、mq等等;
  • Broker作为远程agent与中心agent之间的缓冲区,使用redis实现,一是可以提高系统的性能,二是可以提高系统的可靠性,当中心agent提取数据失败时,数据保存在redis中,而不至于丢失;
  • 中心agent也是LogStash,从Broker中提取数据,可以执行相关的分析和处理(Filter);
  • ElasticSearch用于存储最终的数据,并提供搜索功能;
  • Kibana提供一个简单、丰富的web界面,数据来自于ElasticSearch,支持各种查询、统计和展示;

2. 搭建部署

环境:

  • 本机(20.8.40.49)上部署:redis, 中心agent(LogStash), ElasticSearch以及Kibana
  • 远程测试机(20.20.79.75)上部署:独立agent(LogStash)
  • Redis版本:3.0.0-rc1
  • LogStash版本;logstash-1.4.2
  • ElasticSearch版本:elasticsearch-1.3.4
  • Kibana版本:kibana-3.1.1

2.1 部署redis

部署一个redis单机实例:

$ wget https://github.com/antirez/redis/archive/3.0.0-rc1.tar.gz
$ tar zxvf 3.0.0-rc1.tar.gz -C /usr/local

redis.conf配置文件为:

include ../redis.conf
daemonize yes 
pidfile /var/run/redis_6379.pid
port 6379
logfile /opt/logs/redis/6379.log
appendonly yes 

启动:

$ redis.server redis.conf

ip为10.7.40.40, 端口为6379

2.2 部署中心LogStash

下载并解压:

$ wget https://download.elasticsearch.org/logstash/logstash/logstash-1.4.2.tar.gz
$ tar zxvf logstash-1.4.2.tar.gz -C /usr/local/
$ cd /usr/local/logstash-1.4.2
$ mkdir conf logs

配置文件conf/central.conf:

input {
	redis {
		host => "127.0.0.1"
		port => 6379 
		type => "redis-input"
		data_type => "list"
		key => "key_count"
	}   
}

output {
	stdout {}
	elasticsearch {
		cluster => "elasticsearch"
		codec => "json"
		protocol => "http"
	}   
}

启动:

$ bin/logstash agent --verbose --config conf/central.conf --log logs/stdout.log

配置文件表示输入来自于redis,使用redis的list类型存储数据,key为”key_count”;输出到elasticsearch,cluster的名称为”elasticsearch”;

2.3 部署ElasticSearch

下载并解压:

$ wget https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-1.3.4.tar.gz
$ tar zxvf elasticsearch-1.3.4.tar.gz -C /usr/local

elasticsearch使用默认配置即可,默认的cluster name为:elasticsearch;

启动:

$ bin/elasticsearch -d

2.4 部署远程LogStash

与部署中心LogStash的步骤是类似的,只是配置文件不一样,使用新的配置文件启动即可;

配置文件conf/shipper.conf的内容为:

input {
	file {
		type => "type_count"
		path => ["/data/logs/count/stdout.log", "/data/logs/count/stderr.log"]
		exclude => ["*.gz", "access.log"]
	}   
}

output {
	stdout {}
	redis {
		host => "20.8.40.49"
		port => 6379
		data_type => "list"
		key => "key_count"
	}   
}

配置文件表示输入来自于目录/data/logs/count/下的stdout.log和stderr.log两个文件,且排除该目录下所有.gz文件和access.log;(这里因为path没有使用通配符,所以exclude是没有效果的);输出表示将监听到的event发送到redis服务器,使用redis的list保存,key为”key_count”,这里的data_type属性和key属性应该与中心agent的配置一致;

2.5 部署Kibana

下载并安装:

$ wget https://download.elasticsearch.org/kibana/kibana/kibana-3.1.1.tar.gz
$ tar zxvf kibana-3.1.1.tar.gz 

修改配置文件config.js,仅需要配置elasticsearch的地址即可:

elasticsearch: "http://20.8.40.49:9200"

将目录kibana-3.1.1拷贝到jetty的webapp目录下,并启动jetty:

$ mv kibana-3.1.1 /usr/local/jetty-distribution-9.2.1.v20140609/webapps/
$ bin/jetty start

浏览器访问:

http://20.8.40.49:8080/kibana-3.1.1/
  1. 简单测试

打开LogStash的远程agent和中心agent的日志:

$ tail -f logs/stdout.log

远程agent的数据是以rpush操作将event推送到redis的list中,中心agent通过blpop命令从redis的list中提取数据,因此,测试时由于数据量小,通过命令llen key_count的返回结果很可能为空,因此为了观察redis中数据流的变化,可以使用monitor命令:

$ redis-cli -p 6379 monitor

现在,我们向/data/logs/count目录下的stdout.log和stderr.log各发送一条数据:

$ echo "stdout: just a test message" >> stdout.log
$ echo "stderr: just a test message" >> stderr.log

远程agent和中心agent都会收到event消息,如远程agent的日志为:

{:timestamp=>"2014-10-31T09:30:40.323000+0800", :message=>"Received line", :path=>"/data/logs/count/stdout.log", :text=>"stdout: just a test message", :level=>:debug, :file=>"logstash/inputs/file.rb", :line=>"134"}
{:timestamp=>"2014-10-31T09:30:40.325000+0800", :message=>"writing sincedb (delta since last write = 52)", :level=>:debug, :file=>"filewatch/tail.rb", :line=>"177"}
......
{:timestamp=>"2014-10-31T09:30:49.350000+0800", :message=>"Received line", :path=>"/data/logs/count/stderr.log", :text=>"stderr: just a test message", :level=>:debug, :file=>"logstash/inputs/file.rb", :line=>"134"}
{:timestamp=>"2014-10-31T09:30:49.352000+0800", :message=>"output received", :event=>{"message"=>"stderr: just a test message", "@version"=>"1", "@timestamp"=>"2014-10-31T01:30:49.350Z", "type"=>"type_count", "host"=>"dn1", "path"=>"/data/logs/count/stderr.log"}, :level=>:debug, :file=>"(eval)", :line=>"19"}

我们可以观察到redis的输出:

1414714174.936642 [0 20.20.79.75:54010] "rpush" "key_count" "{\"message\":\"stdout: just a test message\",\"@version\":\"1\",\"@timestamp\":\"2014-10-31T00:10:04.530Z\",\"type\":\"type_count\",\"host\":\"dn1\",\"path\":\"/data/logs/count/stdout.log\"}"
1414714174.939517 [0 127.0.0.1:56094] "blpop" "key_count" "0"
1414714198.991452 [0 20.20.79.75:54010] "rpush" "key_count" "{\"message\":\"stderr: just a test message\",\"@version\":\"1\",\"@timestamp\":\"2014-10-31T00:10:28.586Z\",\"type\":\"type_count\",\"host\":\"dn1\",\"path\":\"/data/logs/count/stderr.log\"}"
1414714198.993590 [0 127.0.0.1:56094] "blpop" "key_count" "0"

从elasticsearch中执行如下的简单查询:

$ curl 'localhost:9200/_search?q=type:type_count&pretty'
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
	"total" : 6,
	"successful" : 6,
	"failed" : 0
  },
  "hits" : {
	"total" : 2,
	"max_score" : 0.5945348,
	"hits" : [ {
	  "_index" : "logstash-2014.10.31",
	  "_type" : "type_count",
	  "_id" : "w87bRn8MToaYm_kfnygGGw",
	  "_score" : 0.5945348,
	  "_source":{"message":"stdout: just a test message","@version":"1","@timestamp":"2014-10-31T08:10:04.530+08:00","type":"type_count","host":"dn1","path":"/data/logs/count/stdout.log"}
	}, {
	  "_index" : "logstash-2014.10.31",
	  "_type" : "type_count",
	  "_id" : "wwmA2BD6SAGeNsuYz5ax-Q",
	  "_score" : 0.5945348,
	  "_source":{"message":"stderr: just a test message","@version":"1","@timestamp":"2014-10-31T08:10:28.586+08:00","type":"type_count","host":"dn1","path":"/data/logs/count/stderr.log"}
	} ]
  }
}

再切换到Kibana的web界面:http://20.8.40.49:8080/kibana-3.1.1

4. 后续工作


  • 使用LogStash的Filter对日志数据进行过滤和分析;
  • 使用Redis的Cluster模式替换单机模式;
  • 在elasticsearch中对数据进行高级的分析和查询;
  • 熟悉Kibana的展示组件以及查询语法;

你可能感兴趣的:(kafka)