算法导论(Python版本)(第6章)

1. 维护最大堆(章节6.2)

import math


def parent(i):
    return math.floor(i/2)


def left(i):
    return 2 * i


def right(i):
    return 2 * i + 1


def max_heapify(A, i):
    l = left(i)
    r = right(i)
    largest = i
    if l < A.__len__() and A[largest] < A[l]:
        largest = l
    if r < A.__len__() and A[largest] < A[r]:
        largest = r
    if largest != i:
        A[i], A[largest] = A[largest], A[i]
        max_heapify(A, largest)
    print(A)


T = [0, 16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
max_heapify(T, 1)

2. 建立最大堆(章节6.3)

import math


def parent(i):
    return math.floor(i/2)


def left(i):
    return 2 * i


def right(i):
    return 2 * i + 1


def max_heapify(A, i):
    l = left(i)
    r = right(i)
    largest = i
    if l < A.__len__() and A[largest] < A[l]:
        largest = l
    if r < A.__len__() and A[largest] < A[r]:
        largest = r
    if largest != i:
        A[i], A[largest] = A[largest], A[i]
        max_heapify(A, largest)

def build_max_heap(A):
    for i in range(math.floor(A.__len__()/2), 1, -1):
        max_heapify(A, i)
    return A

T = [0, 16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
print(build_max_heap(T))

3. 堆排序算法(章节6.4)

import math


def parent(i):
    return math.floor(i/2)


def left(i):
    return 2 * i


def right(i):
    return 2 * i + 1


def max_heapify(A, i):
    l = left(i)
    r = right(i)
    largest = i
    if l < A.__len__() and A[largest] < A[l]:
        largest = l
    if r < A.__len__() and A[largest] < A[r]:
        largest = r
    if largest != i:
        A[i], A[largest] = A[largest], A[i]
        max_heapify(A, largest)

def build_max_heap(A):
    for i in range(math.floor(A.__len__()/2), 1, -1):
        max_heapify(A, i)
    return A


def heapsort(A):
   A = build_max_heap(A)
   S = []  //用以存储排好序的数列
   for i in range(A.__len__()-1, 0, -1):
       A[1], A[i] = A[i], A[1]
       S.append(A[-1])
       A = A[0: -1]
       max_heapify(A, 1)
   return S

T = [0, 16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
print(heapsort(T))

4. 优先队列-最大优先队列(章节6.5)

import math


def parent(i):
    return math.floor(i/2)


def left(i):
    return 2 * i


def right(i):
    return 2 * i + 1


def max_heapify(A, i):
    l = left(i)
    r = right(i)
    largest = i
    if l < A.__len__() and A[largest] < A[l]:
        largest = l
    if r < A.__len__() and A[largest] < A[r]:
        largest = r
    if largest != i:
        A[i], A[largest] = A[largest], A[i]
        max_heapify(A, largest)

def build_max_heap(A):
    for i in range(math.floor(A.__len__()/2), 1, -1):
        max_heapify(A, i)
    return A


def heap_extract_max(A):
   if A.__len__() < 1:
       print('error')
       return 0
   max = A[1]
   A[1] = A[-1]
   A = A[0: -1]
   max_heapify(A, 1)
   return max, A


T = [0, 16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
print(heap_extract_max(T))

5. 优先队列-增大关键字(章节6.5)

import math


def parent(i):
    return math.floor(i/2)


def left(i):
    return 2 * i


def right(i):
    return 2 * i + 1


def max_heapify(A, i):
    l = left(i)
    r = right(i)
    largest = i
    if l < A.__len__() and A[largest] < A[l]:
        largest = l
    if r < A.__len__() and A[largest] < A[r]:
        largest = r
    if largest != i:
        A[i], A[largest] = A[largest], A[i]
        max_heapify(A, largest)

def build_max_heap(A):
    for i in range(math.floor(A.__len__()/2), 1, -1):
        max_heapify(A, i)
    return A


def heap_increase_key(A, i, key):
   if key < A[i]:
       print('error')
       return 0
   A[i] = key
   while i > 1 and A[parent(i)] < A[i]:
       A[parent(i)], A[i] = A[i], A[parent(i)]
       i = parent(i)
   return A


T = [0, 16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
print(heap_increase_key(T, 7, 23))

6. 优先队列-插入新的关键字(章节6.5)

import math


def parent(i):
    return math.floor(i/2)


def left(i):
    return 2 * i


def right(i):
    return 2 * i + 1


def max_heapify(A, i):
    l = left(i)
    r = right(i)
    largest = i
    if l < A.__len__() and A[largest] < A[l]:
        largest = l
    if r < A.__len__() and A[largest] < A[r]:
        largest = r
    if largest != i:
        A[i], A[largest] = A[largest], A[i]
        max_heapify(A, largest)

def build_max_heap(A):
    for i in range(math.floor(A.__len__()/2), 1, -1):
        max_heapify(A, i)
    return A


def heap_increase_key(A, i, key):
   if key < A[i]:
       print('error')
       return 0
   A[i] = key
   while i > 1 and A[parent(i)] < A[i]:
       A[parent(i)], A[i] = A[i], A[parent(i)]
       i = parent(i)
   return A

def max_heap_insert(A, key):
    A.append(float('-Inf'))
    return heap_increase_key(A, A.__len__()-1, key)

T = [0, 16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
print(max_heap_insert(T, 23))

 

你可能感兴趣的:(算法导论(Python版本)(第6章))