- 免费提供多样风格手机壁纸及自动更换功能的软件
开开心心就好
智能手机tcp/ipmacos网络协议androidpdfpython
在寻找手机壁纸时,要是能有一款软件,既免费又资源丰富,操作还简单方便,那可就太棒了。今天就给大家介绍这样一款软件——壁纸喵,它能满足你对手机壁纸的各种需求。壁纸喵是一款完全免费的手机壁纸软件,其壁纸资源极其丰富。不管你喜欢哪种风格和主题,无论是竖屏、横屏,还是追求高清品质的4K壁纸,在这里都能找到。各种风格应有尽有,从简约清新到华丽炫酷,从可爱萌系到酷炫科技,丰富的选择让你总能找到心仪的那一款。便
- C语言 - getchar() 和 getch() 的区别
Peter_Deng.
c语言算法
getchar()和getch()都是用于读取单个字符的函数,但它们有一些关键区别,主要涉及缓冲区、回显和移植性。1.getchar()特点头文件:#include从标准输入(stdin)读取一个字符,需要按下Enter才能生效。带缓冲(Buffered):用户输入的内容会先存入缓冲区,只有按下Enter之后,getchar()才会从缓冲区读取数据。回显(Echo):输入的字符会显示在屏幕上。代码
- chokidar - chokidar 初识(初识案例演示、初识案例解读、初识案例测试)
我命由我12345
Node.js简化库编程node.jsjsjavascript前端框架前端npmhtml5
一、chokidar1、chokidar概述chokidar是一个用于监视文件系统变化的Node.js库chokidar提供了一种简单、高效的方式来监视文件和目录的创建、修改、删除等操作chokidar是是fs.watch和fs.watchFile方法的增强版,解决了它们在一些平台上的不一致性和局限性2、chokidar的特点跨平台的支持:chokidar在Windows、Linux、macOS上
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- Vue前端实现多个条件表格搜索
1724580787
前端vue.jsjavascript
文章目录操作实现效果测试json数据搜索栏条件过滤完成搜索表格栏完整代码操作实现效果在vue文件中通过js代码完成多条件搜索符合条件的table数据,本文使用了element-ui组件创建表格。效果如下图所示:测试json数据[{"test1":"","test2":"","test3":"","test4":""}...//这里只展示一条数据]搜索栏条件过滤完成搜索computed计算方法监视t
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- MiniMind:3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练!
哈罗·沃德
LLMgpt
MiniMind:3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练!概述MiniMind是一个开源的微型语言模型,它的设计目标是让个人GPU用户也能够快速推理甚至训练语言模型。它的体积仅为26M,大约是GPT3的1/7000,非常适合快速部署和实验。https://github.com/user-attachments/assets/88b98128-636e-43bc
- llama源码学习·model.py[3]ROPE旋转位置编码(2)旋转角度生成代码
小杜不吃糖
llama
一、源码注释defprecompute_freqs_cis(dim:int,end:int,theta:float=1000.0):'''预先计算频率和复数的cosine和sine值,用于后续的PositionalEncodingdim:维度end:一个序列的最大长度或位置的最大值theta:用于计算频率的超参数,默认值为1000.0'''#生成一个等比数列,即频率(frequencies),这种
- 跟着黑马学MySQL基础篇笔记(1)-概述与SQL
小杜不吃糖
mysql笔记sql
03.安装与启动启动netstartmysql80netstopmysql80客户端连接mysql[-h127.0.0.1][-P3306]-uroot-p04.mysql数据模型关系型数据库RDBMS05.通用语法及分类DDL:数据定义语言,用来定义数据库对象(数据库,表,字段)DML:数据操作语言,用来对数据库表中的数据进行增删改DQL:数据查询语言,用来查询数据库中表的记录DCL:数据控制语
- 如何编写一个Spring Boot Starter
一口酥Hac
javaspringboot后端javamaven
文章目录概要创建一个SpringBootStarter的步骤创建一个Maven项目打包并发布在其他项目中使用总结概要写一个SpringBootStarter其实就是封装一部分功能,方便其他项目引入和使用。Starter是SpringBoot提供的一种机制,目的是为了简化配置和模块化开发。一般来说,SpringBootStarter会封装一个特定的功能模块,并自动配置一些常用的组件。通过写一个Sta
- adb 如何导出手机的文件
风继续吹..
工具类Uni-Appadb智能手机uniappsqlite
目录1.开启USB调试2.连接设备3.启动ADB4.导出文件使用adbpull命令5.可视化工具预览adb(AndroidDebugBridge)是Android开发中常用的一个工具,它允许开发者通过电脑与Android设备进行通信。如果你想通过adb导出手机上的文件,你可以按照以下步骤业务需求:前端通过使用uni-app的sqlite(关系型数据库系统),存储了大量的机密数据在手机上,直接通过代
- PostgreSQL_数据使用与日数据分享
程序猿与金融与科技
数据库postgresql
目录前置:1使用1.1获取前复权因子1.2查询股票的纵向数据1.3查询股票的横向数据2日数据分享(截止至:2025-03-21)总结前置:本博文是一个系列。在本人“数据库专栏”-》“PostgreSQL_”开头的博文。本文为该系列最后一篇。1使用1.1获取前复权因子访问优矿官网ticker_list=[]field_list=['secID','tradeDate','accumAdjFactor
- (链表)19. 删除链表的倒数第 N 个结点
蹉跎x
力扣链表数据结构算法
给你一个链表,删除链表的倒数第n个结点,并且返回链表的头结点。示例1:输入:head=[1,2,3,4,5],n=2输出:[1,2,3,5]示例2:输入:head=[1],n=1输出:[]示例3:输入:head=[1,2],n=1输出:[1]提示:链表中结点的数目为sz1next=head;intcnt=-1;ListNode*cur=dummyhead;while(cur!=nullptr){c
- PostgreSQL_实例项目总述
程序猿与金融与科技
数据库postgresql
目录前置:实例项目总述:前置:1最近新入PostgreSQL,打算用PostgreSQL存储股票日数据,以此为实例记录整个PostgreSQL使用过程2所以这次的博文是一个序列,都放在数据库专栏里,以PostgreSQL_打头3PostgreSQL的安装在这个系列里就不赘述了,安装过程简单。(如果有人实在搞不懂怎么安装,可以留言)实例项目总述:项目描述:股票日数据仓库数据来源:优矿1数据表结构设计
- DPO 核心理论推导:参考策略距离约束下的最优策略 + 损失函数设计
iiiiii11
机器学习人工智能论文阅读笔记语言模型深度学习
Rafailov,Rafael,etal.“Directpreferenceoptimization:Yourlanguagemodelissecretlyarewardmodel.”AdvancesinNeuralInformationProcessingSystems36(2023):53728-53741.本文整理了DPO论文中两个核心结论的推导,包括参考策略距离约束下的最优策略的形式,以及
- 使用Seaborn库中的`violinplot`函数绘制水平小提琴图(Violin Plot)是一种常见的数据可视化方法
code_welike
信息可视化数据分析数据挖掘Python
使用Seaborn库中的violinplot函数绘制水平小提琴图(ViolinPlot)是一种常见的数据可视化方法。水平小提琴图可以展示数据的分布特征,并可以对比不同组别之间的差异。本文将介绍如何使用Python和Seaborn库绘制水平小提琴图,并提供相应的源代码示例。首先,我们需要确保已经安装了Seaborn库。可以使用以下命令在Python中安装Seaborn:pipinstallseabo
- llama-factory 微调 Qwen2.5-3B-Instruct
coco_1998_2
llamafactoryfinetune
0、资源链接官方readme:https://github.com/hiyouga/LLaMA-Factory/blob/v0.9.1/README_zh.md官方文档:https://llamafactory.readthedocs.io/zh-cn/latest/官方推荐的知乎教程:https://zhuanlan.zhihu.com/p/6952876071、安装LLaMAFactorygi
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- Android 车联网——汽车系统介绍(附2)
c小旭
Android车联网android车联网
汽车系统指的是由多个模块或组件组成的系统,如发动机系统、制动系统、空调系统等,这些系统通常由多个ECU协同工作来完成特定的任务。一、汽车系统1、防抱死制动系统ABS(Anti-lockBrakingSystem,防抱死制动系统)是一项重要的汽车安全技术,其主要功能是在车辆紧急制动时防止车轮完全锁死(抱死)。ABS系统通过自动控制制动力,使得车轮在制动过程中仍然能够保持一定的转动,从而避免因车轮抱死
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- StarRocks 排查单副本表
Shyllin
StarRocksStarRocks
文章目录StarRocks排查单副本表方式1查询元数据,检查分区级的副本数方式2SHOWPARTITIONS命令查看ReplicationNum修改副本数命令StarRocks排查单副本表方式1查询元数据,检查分区级的副本数#方式一查询元数据,检查分区级的副本数withv_tmp1as(selectTABLE_ID,PARTITION_ID,tablet_id,count(*)ascntfromi
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- 使用Seaborn绘制水平小提琴图
YOUFDJ
python开发语言Python
使用Seaborn绘制水平小提琴图水平小提琴图是一种常用的数据可视化工具,可以用于展示不同类别之间的分布情况。在Python中,我们可以使用Seaborn库的catplot函数来轻松地绘制水平小提琴图。本文将介绍如何使用Seaborn绘制水平小提琴图,并附带相应的源代码示例。首先,确保你已经安装了Seaborn库。如果没有安装,可以使用以下命令在命令行中安装:pipinstallseaborn安装
- Python文件与格式化:编程世界的“读写之道“(技术深挖版)
被窝妄想家
python进阶指南python数据库开发语言
一、文件操作:Python的"读写之眼"1.1文件基础哲学在计算机世界中,文件就像一本本等待翻阅的典籍。Python的open()函数如同手持放大镜,让我们能精确控制阅读和书写:#经典打开模式组合withopen("data.txt","r+",encoding="utf-8")asf:#r+模式:可读可写,文件指针初始位置在开头content=f.read(10)#读取前10个字节f.seek(
- 使用Seaborn绘制小提琴图
CodeWG
python开发语言
使用Seaborn绘制小提琴图在数据分析与可视化中,小提琴图是一种常用的图表类型。它能够展示数据的分布情况,同时还能显示中位数、四分位数和异常值等统计指标。在Python中,我们可以使用Seaborn库来轻松地绘制小提琴图。下面就来详细介绍一下如何使用Seaborn来创建小提琴图。首先,我们需要导入必要的库和数据集。这里我们使用Seaborn自带的数据集tips作为例子。importseaborn
- cippe2025北京石油展,遨游通讯将携多款防爆手机亮相!
AORO_BEIDOU
智能手机信息与通信人工智能安全网络
在石油石化等危险作业场景,安全是生命线,智能化是未来发展的核心引擎。2025年3月26-28日,遨游通讯将携九重防爆标准及防爆手机、防爆对讲机、防爆平板等防爆智能终端,强势登陆第二十五届中国国际石油石化技术装备展览会(cippe)!诚邀您莅临E1馆E1159展位,共同见证安全与智能深度融合的革新力量!一、核心产品遨游通讯依托九重防爆标准,打造覆盖石油、石化全场景的防爆智能终端,为危险作业场景提供“
- C++从入门到实战(六)类和对象(第二部分)C++成员对象及其实例化,对象大小与this详解
珹洺
C++学习之旅c++java开发语言数据结构sql汇编算法
C++从入门到实战(六)类和对象(第二部分)C++成员对象及其实例化,对象大小与this详解前言一、类和对象里面成员变量,成员函数是什么1.1成员变量1.2成员函数1.3成员变量、成员函数与局部变量的对比二、类的实例化2.1什么是实例化,实例化的概念2.2类的实例化过程1.类的定义2.实例化对象3.初始化对象4.访问对象的成员函数三、对象大小类对象大小计算示例四、this指针4.1this的原理4
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc