疫情之下,人脸识别有了更具挑战的应用场景。我有一些想法并实践了一下,如果大家有不错的想法欢迎交流。百度公司目前已经开放了口罩场景下的人脸检测和人脸识别API,但只公布了人脸检测的模型。
链接: link.
系统:Ubuntu 18
语言:Python 2/3
PaddlePaddle
PaddleHub
OpenCV
由于戴口罩时的人脸下半部被遮挡,而下半部人脸的特征比上半部人脸的多且明显,提取脸部信息的难度会提高很多。整个流程并不复杂,难点在于识别器的算法选择和调节参数
人脸检测模型:PadddleHub已经提供的预训练模型(pyramidbox_lite_mobile_mask/pyramidbox_lite_server_mask) 链接: link.
切割人脸图像:1.使用OpenCV直接对人脸图像按比例进行切割。2.使用人脸关键点检测,按点位进行切割.链接:link
OpenCV识别器算法:OpenCV 的识别器提供三种算法:Eigen、Fisher、LBPH。官方文档:link 这里我采用的时LBPH算法,它提取的是局部特征并且空间因素对其干扰小。原理介绍参考:link
了解原理对后续调参很重要
# coding=utf-8
import numpy as np
import cv2 as cv
import paddlehub as hub
cap = cv.VideoCapture(0)
if not cap.isOpened():
print("Cannot open camera")
exit()
#创建检测器
face_recognizer = cv.face.LBPHFaceRecognizer_create(radius = 2, neighbors = 12, grid_x = 12)
# 加载模型
module = hub.Module(name="pyramidbox_lite_server_mask")
face_landmark = hub.Module(name="face_landmark_localization")
face_landmark.set_face_detector_module(hub.Module(name="ultra_light_fast_generic_face_detector_1mb_320"))
face_recognizer.read('face-mask-rec.xml')
def detect_mask(frame):
input_dict = {"data": [frame]}
results = module.face_detection(data=input_dict)
if results != [] :
label = results[0]['data']['label']
x1 = int(results[0]['data']['left'])
y1 = int(results[0]['data']['top'])
x2 = int(results[0]['data']['right'])
y2 = int(results[0]['data']['bottom'])
rect = (x1,y1,x2,y2)
return rect, label
else:
return (0, 0, 0, 0), None
def cut_mask(frame, rect):
"""
#关键点检测,按点位切割
results = face_landmark.keypoint_detection(images=[frame], visualization=False)
if results != []:
x1 = int(results[0]['data'][0][1][0])
y1 = int(results[0]['data'][0][19][1])
x2 = int(results[0]['data'][0][15][0])
y2 = int(results[0]['data'][0][15][1])
h = y2-y1
y1 = int(y1-(h/2))
cut_img = frame[y1:y2, x1:x2]
if x1 > 0 or y1 > 0:
return cut_img
else:
return None
else:
return None
"""
#按比列切割
x1 = rect[0]
y1 = rect[1]
x2 = rect[2]
y2 = rect[3]
h = y2-y1
w = x2-x1
y2_0 = y2-int((y2-y1)/1.8)
cut_img = frame[y1:y2_0, x1:x2]
if x1 <= 0 or y1<= 0:
return None
else:
print x1,x2
return cv.cvtColor(cut_img, cv.COLOR_BGR2GRAY)
def prepare_training_data():
faces = []
labels = []
label = user_list()
for num in range(0,71):
rec, frame = cap.read()
rect ,mask_label = detect_mask(frame)
cut_img = cut_mask(frame,rect)
if cut_img is None:
return None, None
#cv.imwrite('1/'+str(num)+'.jpg', half_face)
#将脸添加到脸部列表并添加相应的标签
faces.append(cut_img)
labels.append(label)
return faces, labels
def user_list():
label = 0
while True:
name = face_recognizer.getLabelInfo(label)
if len(name) != 0:
print 'label:', label, 'name:', name
else:
name = raw_input('input user'+str(label)+'name:')
face_recognizer.setLabelInfo(label, name)
return label
label += 1
return None
def predict(frame, rect):
eye = cut_mask(frame, rect)
if eye is not None:
#预测人脸
results = face_recognizer.predict(eye)
#print(results[0])
#置信度阈值
if results[1] < 180:
label_text = face_recognizer.getLabelInfo(results[0])
else:
label_text = 'stranger'
return label_text
else:
return 'not whole face'
def draw_rectangle(img, rect):
(x1, y1, x2, y2) = rect
cv.rectangle(img, (x1, y1), (x2, y2), (128, 128, 0), 2)
def draw_text(img, text, x, y):
cv.putText(img, text, (x, y), cv.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
while True:
ret, frame = cap.read()
rect, label = detect_mask(frame)
draw_rectangle(frame, rect)
draw_text(frame, label, rect[0], rect[1])
if cv.waitKey(3) == ord('s'):
print("prepare data")
faces, labels = prepare_training_data()
print("training..")
if faces is None:
print 'error:lose face'
else:
face_recognizer.update(faces, np.array(labels))
face_recognizer.write('face-mask-rec.xml')
print("SUCCESS!")
#参数信息
"""GridX = face_recognizer.getGridX()
GridY = face_recognizer.getGridX()
Neighbors = face_recognizer.getNeighbors()
Radius = face_recognizer.getRadius()
Threshold = face_recognizer.getThreshold()
print("GridX:",GridX)
print("GridY:",GridY)
print("Neighbors:",Neighbors)
print("Radius:",Radius)
print("Threshold:",Threshold)"""
elif cv.waitKey(3) == ord('q'):
break
if face_recognizer != 0:
name_label = predict(frame, rect)
# 标出预测的名字
draw_text(frame, name_label, rect[0], rect[3])
cv.imshow('frame', frame)
# When everything done, release the capture
cap.release()
预训练模型:face-mask-rec.xml。这是之前自己训练好,然后保存的。第一次运行程序需要稍微改动一点以上代码,创建预训练模型并保存。然后才能正常运行以上完整的代码。实际上就是创建一个空的检测器,保存为模型文件,方便更新使用
#创建检测器
face_recognizer = cv.face.LBPHFaceRecognizer_create(radius = 2, neighbors = 12, grid_x = 12)
face_recognizer.save('path')
调参决定效果好坏,我只是简单地调整一下,并没有进行细致的评估和优化,还有很大的提升空间