UserMapper mapper = session.getMapper(UserMapper.class);
User user = mapper.selectByPrimaryKey(1);
这篇文章我们将从上面两行代码看起,首先就是获得mapper文件对应的映射类,然后执行里面的数据库操作:
public T getMapper(Class type) {
return configuration.getMapper(type, this);
}
在方法里面将映射类的class对象和当前session作为参数在configuration里面查找:
public T getMapper(Class type, SqlSession sqlSession) {
return mapperRegistry.getMapper(type, sqlSession);
}
然后从存放mapper的工厂里面来查找:
public T getMapper(Class type, SqlSession sqlSession) {
//根据class对象获取它对应的代理工厂
final MapperProxyFactory mapperProxyFactory = (MapperProxyFactory) knownMappers.get(type);
if (mapperProxyFactory == null) {
throw new BindingException("Type " + type + " is not known to the MapperRegistry.");
}
try {
//由代理工厂生成一个代理对象
return mapperProxyFactory.newInstance(sqlSession);
} catch (Exception e) {
throw new BindingException("Error getting mapper instance. Cause: " + e, e);
}
}
由代理工厂为我们生成一个对应接口的代理对象:
public T newInstance(SqlSession sqlSession) {
//封装成一个代理类
final MapperProxy mapperProxy = new MapperProxy(sqlSession, mapperInterface, methodCache);
//作为参数实例化
return newInstance(mapperProxy);
}
将当前的会话、接口、和方法的缓存封装成一个mapper代理类,然后实例化:
protected T newInstance(MapperProxy mapperProxy) {
return (T) Proxy.newProxyInstance(mapperInterface.getClassLoader(), new Class[] { mapperInterface }, mapperProxy);
}
实际上刚刚创建的MapperProxy就是一个拦截器,那么我们所关注的点就是它里面的invoke方法:
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
try {
//当前代理类是否是执行方法的声明类,如果是,直接执行
if (Object.class.equals(method.getDeclaringClass())) {
return method.invoke(this, args);
//如果是默认的方法,则按照执行默认方法的逻辑处理
} else if (isDefaultMethod(method)) {
return invokeDefaultMethod(proxy, method, args);
}
} catch (Throwable t) {
throw ExceptionUtil.unwrapThrowable(t);
}
final MapperMethod mapperMethod = cachedMapperMethod(method);
return mapperMethod.execute(sqlSession, args);
}
首先会判断声明当前方法的是否是一个类,如果不是就需要创建一个MapperMethod :
public Object execute(SqlSession sqlSession, Object[] args) {
Object result;
switch (command.getType()) {
case INSERT: {... }
case UPDATE: {... }
case DELETE: {...}
case SELECT:...
case FLUSH:...
default:
throw new BindingException("Unknown execution method for: " + command.getName());
}
if (result == null && method.getReturnType().isPrimitive() && !method.returnsVoid()) {
throw new BindingException("Mapper method '" + command.getName()
+ " attempted to return null from a method with a primitive return type (" + method.getReturnType() + ").");
}
return result;
}
在MapperMethod 的execute方法里面会根据method的类型对应数据库的不同的操作进入不同的分支进行执行,在这我们就以select来看:
case SELECT:
if (method.returnsVoid() && method.hasResultHandler()) {
executeWithResultHandler(sqlSession, args);
result = null;
} else if (method.returnsMany()) {
result = executeForMany(sqlSession, args);
} else if (method.returnsMap()) {
result = executeForMap(sqlSession, args);
} else if (method.returnsCursor()) {
result = executeForCursor(sqlSession, args);
} else {
Object param = method.convertArgsToSqlCommandParam(args);
result = sqlSession.selectOne(command.getName(), param);
}
break;
根据不同的返回值类型采用不同的执行方法,在后面我们会看到对method的方法调用,所以我们在这就先深入到这个地方,然后我们回到动态代理的创建:
UserMapper mapper = session.getMapper(UserMapper.class);
动态代理创建完后就返回了我们需要的接口类型的实例,下面就开始执行具体的方法了:
User user = mapper.selectByPrimaryKey(1);
获取主键为1的对象:
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
try {
if (Object.class.equals(method.getDeclaringClass())) {
return method.invoke(this, args);
} else if (isDefaultMethod(method)) {
return invokeDefaultMethod(proxy, method, args);
}
} catch (Throwable t) {
throw ExceptionUtil.unwrapThrowable(t);
}
final MapperMethod mapperMethod = cachedMapperMethod(method);
return mapperMethod.execute(sqlSession, args);
}
执行代理类的invoke方法,和我们刚才看见的一样,由于在这里mapper文件里面的命名空间对应的类是一个接口,所以在这是会创建一个mappermethod来执行:
Object param = method.convertArgsToSqlCommandParam(args);
result = sqlSession.selectOne(command.getName(), param);
在execute方法里面由于是select方法且返回值只有一个,所以只会执行上面这段代码段,首先将我们的参数封装成Map或者是单个对象,然后执行数据库操作返回结果:
public T selectOne(String statement, Object parameter) {
//执行数据库操作
List list = this.selectList(statement, parameter);
if (list.size() == 1) {
return list.get(0);
} else if (list.size() > 1) {
throw new TooManyResultsException("Expected one result (or null) to be returned by selectOne(), but found: " + list.size());
} else {
return null;
}
}
statement实际上是我们的接口的全限命名和方法的名字,parameter则是我们传入的参数:
public List selectList(String statement, Object parameter, RowBounds rowBounds) {
try {
//根据statement获取对应的sql语句
MappedStatement ms = configuration.getMappedStatement(statement);
//执行器执行
return executor.query(ms, wrapCollection(parameter), rowBounds, Executor.NO_RESULT_HANDLER);
} catch (Exception e) {
throw ExceptionFactory.wrapException("Error querying database. Cause: " + e, e);
} finally {
ErrorContext.instance().reset();
}
}
首先会根据statement找到对应的sql语句,然后执行器带着sql语句和参数执行query方法:
public List query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
//带着参数从ms中获取绑定的sql
BoundSql boundSql = ms.getBoundSql(parameterObject);
//生成一个缓存的key
CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql);
执行查询
return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
我们之前解析完sql后,存在着一些占位符,所以需要我们传入的参数进行填充,下面我们就来看一下是如何获得绑定的sql的:
public BoundSql getBoundSql(Object parameterObject) {
//从当前sqlSource中获得sql
BoundSql boundSql = sqlSource.getBoundSql(parameterObject);
//获取需要的参数列表
List parameterMappings = boundSql.getParameterMappings();
//如果需要的参数为空,就直接重新创建一个sql
if (parameterMappings == null || parameterMappings.isEmpty()) {
boundSql = new BoundSql(configuration, boundSql.getSql(), parameterMap.getParameterMappings(), parameterObject);
}
...
return boundSql;
}
接着看从sqlSource里面获取 sql:
public BoundSql getBoundSql(Object parameterObject) {
return new BoundSql(configuration, sql, parameterMappings, parameterObject);
}
实际上就是创建了要给sql 的对象,保存了我们传入的值。获取到boundSql之后会为当前这次查询生成一个cacheKey:
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
CacheKey cacheKey = new CacheKey();
cacheKey.update(ms.getId());
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
cacheKey.update(boundSql.getSql());
List parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
// mimic DefaultParameterHandler logic
for (ParameterMapping parameterMapping : parameterMappings) {
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
cacheKey.update(value);
}
}
if (configuration.getEnvironment() != null) {
// issue #176
cacheKey.update(configuration.getEnvironment().getId());
}
return cacheKey;
}
看完我们就会发现,一次完全相同的查询包括相同的statementid,相同的结果集的偏移量和数据量,相同的需要的参数的值,以及相同的sql语句
public List query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
//首先检查缓存中有没有结果
Cache cache = ms.getCache();
//缓存中存在
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, boundSql);
@SuppressWarnings("unchecked")
List list = (List) tcm.getObject(cache, key);
//没有在缓存中获取到值,需要再重新执行查询,然后放到缓存中
if (list == null) {
list = delegate. query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
//缓存中没有,直接从数据库中查询
return delegate. query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
如果缓存不为空,那么就会先尝试从缓存中获取,获取失败后还会从数据库中查询:
public List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
//当前没有线程执行查询并且需要刷新缓存,那么就要清空缓存
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List list;
try {
//每当一个线程要执行缓存就要计一次数
queryStack++;
//从缓存中查找,如果没有执行查询
list = resultHandler == null ? (List) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
} finally {
//执行完查询后计数器减1
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
// issue #601
deferredLoads.clear();
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
// issue #482
clearLocalCache();
}
}
return list;
}
这个方法对进行查询的线程的数量进行了统计,并在合适的时刻清除缓存,查询的时候还是会尝试从缓存中查找,找不到的时候再从数据库中查:
public List doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException {
Statement stmt = null;
try {
Configuration configuration = ms.getConfiguration();
//创建一个生成statement的处理器
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql);
//生成statement
stmt = prepareStatement(handler, ms.getStatementLog());
//执行查询
return handler.query(stmt, resultHandler);
} finally {
closeStatement(stmt);
}
}
最后通过statement执行的查询,所以说再mybatis的mapper文件中建议使用#就是由于#会被替换成?,在生成最终的sql的时候是作为参数被替换的,而不是简单的字符串拼接,可以防止sql注入:
private Statement prepareStatement(StatementHandler handler, Log statementLog) throws SQLException {
Statement stmt;
//获取数据库连接
Connection connection = getConnection(statementLog);
//准备一些连接信息和超时信息
stmt = handler.prepare(connection, transaction.getTimeout());
//将占位符替换成我们传入的数据
handler.parameterize(stmt);
return stmt;
}
在这方法中就是最终完成了statement的封装并返回。