maskrcnn-benchmark理解记录——R_50_FPN的module和各层维度

Table of Contents

序、一些记录

一、先看GeneralizedRCNN

 A、backbone

1)ResNet

2)FPN  #todo

 B、rpn

1) anchor_generator: 

2)head #todo

3)box_selector_train(inference.py)#todo

4)box_selector_test

C、rois_heads 

1)box

2)keypoint

 二、module总览

三、配置总览


序、一些记录

1.记录下COCO数据集:主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括80种物体类别,328,000影像和2,500,000个label。主要的是有约 100,000个人的关键点信息的标注。而coco每张图约4~6个人,那就是约2万张有人的样本。

2.nn.Conv2d的功能是:对由多个输入平面组成的输入信号进行二维卷积。(有bias)

Conc2d(in_channels (int),out_channels (int),kernel_size (int or tuple), stride (int or tuple, optional),padding (int or tuple, optional),dilation (int or tuple, optional),bias (bool, optional),groups:将输入数据分组,通常不用管这个参数.)

(int1, int2)的元组(本质上单个的int就是相同int的(int, int)。在元组中,第1个参数对应高度维度,第2个参数对应宽度维度。
bias (bool, optional): If True, adds a learnable bias to the output. Default: True(偏差)

2. 1关于 groups 参数

对于 groups 参数,用于分解 inputs 和 outputs 间的关系,分组进行卷积操作.

[1] - groups=1,所有输入进行卷积操作,得到输出.

[2] - groups=2,等价于有两个并列 conv 操作,每个的输入是一半的 input_channels,并输出一半 - 的 output_channels,然后再进行链接.

[3] - groups=in_channels,每个 input channel 被其自己的 filters 进行卷积操作,尺寸为Cout/Cin

group=in_channelsout_channels = K * in_channels,其中,K 是正整数,此时的操作被称为 depthwise convolution.

groups 决定了将原输入in_channels 分为几组,而每组 channel 重用几次,由out_channels/groups 计算得到,这也说明了为什么需要 groups能供被 out_channelsin_channels整除. - pyotrch_nn.Conv2d中groups参数的理解

3.总览在后面。

一、先看GeneralizedRCNN

有backbone、rpn、rois_heads。

GeneralizedRCNN(
  (backbone): Sequential(
    (body): ResNet()
    (fpn): FPN()
  )
  (rpn): RPNModule(
    (anchor_generator):AnchorGenerator()
    (head): RPNHead()
    (box_selector_train): RPNPostProcessor()
    (box_selector_test): RPNPostProcessor()
  )
  (roi_heads): CombinedROIHeads(
    (box): ROIBoxHead()
    (keypoint): ROIKeypointHead()
  )
)

 A、backbone

1)ResNet

    (body): ResNet(
      (stem): StemWithFixedBatchNorm()
      (layer1): Sequential()
      (layer2): Sequential()
      (layer3): Sequential()
      (layer4): Sequential()#Sequential
    )

每一层开始有个下采样,并进行维度的调节。eg: layer2(上表中的conv3_x)

先 (downsample): Sequential(
            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)     把上层的维度256,转为512以便于与此block【1*1,128;3*3,128;1*1,512】的结尾512维度一致,然后进行add。

2)FPN  #todo

    (fpn): FPN(
      (fpn_inner1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (fpn_inner2): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (fpn_inner3): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (fpn_inner4): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (top_blocks): LastLevelMaxPool()
    )

 B、rpn

1) anchor_generator: 

    (anchor_generator): AnchorGenerator(
      (cell_anchors): BufferList()
    )

2)head #todo

    (head): RPNHead(
      (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (cls_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))    #
      (bbox_pred): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))    # 位置3*4 
    )

3)box_selector_train(inference.py)#todo

(box_selector_train): RPNPostProcessor()

4)box_selector_test

(box_selector_test): RPNPostProcessor()

C、rois_heads 

1)box

#这里就是RCNN Head

(box): ROIBoxHead(
    (feature_extractor): FPN2MLPFeatureExtractor() 
    #7*7*256.配合spatial_scale对conv1-conv2进行ROIAlign,→fc1024→fc1024
    (predictor): FPNPredictor()         #class(2)、box(4)
    (post_processor): PostProcessor()   #从一组classification scores, box regression and proposals,
                                        #计算后处理框(post-processed boxes), 并应用NMS得到最终结果
)

#TODO :modeling/roi_heads/box_head/inference.py  →PostProcessor()

    (box): ROIBoxHead(
      (feature_extractor): FPN2MLPFeatureExtractor(
        (pooler): Pooler(
          (poolers): ModuleList(
            (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=2)
            (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=2)
            (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=2)
            (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=2)
          )
        )
        (fc6): Linear(in_features=12544, out_features=1024, bias=True)
        (fc7): Linear(in_features=1024, out_features=1024, bias=True)
      )
      (predictor): FPNPredictor(
        (cls_score): Linear(in_features=1024, out_features=2, bias=True)
        (bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
      )
      (post_processor): PostProcessor()
    )


2)keypoint

    (keypoint): ROIKeypointHead(
      (feature_extractor): KeypointRCNNFeatureExtractor()
      (predictor): KeypointRCNNPredictor()
      (post_processor): KeypointPostProcessor()
    )

i)feature_extractor  这里就是 #14*14*256.配合spatial_scale对conv1-conv2进行ROIAlign,就是

14*14*256→14*14*512--*8-->14*14*512(8层)→

ii)predictor  (s=3,1/2)7*7*17。共17个热图,也就是类别为17。每个热图大小为7*7,并且呢,每个热图只会分出来一类。

iii) modeling/roi_heads/keypoint_head/inference.py→KeypointPostProcessor TODO

 

    (keypoint): ROIKeypointHead(
      (feature_extractor): KeypointRCNNFeatureExtractor(
        (pooler): Pooler(
          (poolers): ModuleList(
            (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=2)
            (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=2)
            (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=2)
            (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=2)
          )
        )
        (conv_fcn1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))  #same
        (conv_fcn2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn5): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn6): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn7): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn8): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (predictor): KeypointRCNNPredictor(
        (kps_score_lowres): ConvTranspose2d(512, 17, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
      )                          # 这个是缩小的1/2
      (post_processor): KeypointPostProcessor()
    )

 二、module总览



GeneralizedRCNN(
  (backbone): Sequential(
    (body): ResNet(
      (stem): StemWithFixedBatchNorm(
        (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        (bn1): FrozenBatchNorm2d()
      )
      (layer1): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
      (layer2): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (3): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
      (layer3): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (3): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (4): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (5): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
      (layer4): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
    )
    (fpn): FPN(
      (fpn_inner1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (fpn_inner2): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (fpn_inner3): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (fpn_inner4): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
      (fpn_layer4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (top_blocks): LastLevelMaxPool()
    )
  )
  (rpn): RPNModule(
    (anchor_generator): AnchorGenerator(
      (cell_anchors): BufferList()
    )
    (head): RPNHead(
      (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (cls_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
      (bbox_pred): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
    )
    (box_selector_train): RPNPostProcessor()
    (box_selector_test): RPNPostProcessor()
  )
  (roi_heads): CombinedROIHeads(
    (box): ROIBoxHead(
      (feature_extractor): FPN2MLPFeatureExtractor(
        (pooler): Pooler(
          (poolers): ModuleList(
            (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=2)
            (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=2)
            (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=2)
            (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=2)
          )
        )
        (fc6): Linear(in_features=12544, out_features=1024, bias=True)
        (fc7): Linear(in_features=1024, out_features=1024, bias=True)
      )
      (predictor): FPNPredictor(
        (cls_score): Linear(in_features=1024, out_features=2, bias=True)
        (bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
      )
      (post_processor): PostProcessor()
    )
    (keypoint): ROIKeypointHead(
      (feature_extractor): KeypointRCNNFeatureExtractor(
        (pooler): Pooler(
          (poolers): ModuleList(
            (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=2)
            (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=2)
            (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=2)
            (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=2)
          )
        )
        (conv_fcn1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn5): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn6): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn7): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv_fcn8): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (predictor): KeypointRCNNPredictor(
        (kps_score_lowres): ConvTranspose2d(512, 17, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
      )
      (post_processor): KeypointPostProcessor()
    )
  )
)

三、配置总览

2019-03-04 15:44:25,518 maskrcnn_benchmark.utils.checkpoint INFO: Loading checkpoint from catalog://ImageNetPretrained/MSRA/R-50
2019-03-04 15:44:25,518 maskrcnn_benchmark.utils.checkpoint INFO: catalog://ImageNetPretrained/MSRA/R-50 points to https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
2019-03-04 15:44:25,521 maskrcnn_benchmark.utils.checkpoint INFO: url https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/MSRA/R-50.pkl cached in /home/vivian/.torch/models/R-50.pkl
2019-03-04 15:44:25,851 maskrcnn_benchmark.utils.c2_model_loading INFO: Remapping C2 weights
2019-03-04 15:44:25,851 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: conv1_b              mapped name: conv1.bias
2019-03-04 15:44:25,851 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: conv1_w              mapped name: conv1.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: fc1000_b             mapped name: fc1000.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: fc1000_w             mapped name: fc1000.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch1_b     mapped name: layer1.0.downsample.0.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch1_bn_b  mapped name: layer1.0.downsample.1.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch1_bn_s  mapped name: layer1.0.downsample.1.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch1_w     mapped name: layer1.0.downsample.0.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2a_b    mapped name: layer1.0.conv1.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2a_bn_b mapped name: layer1.0.bn1.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2a_bn_s mapped name: layer1.0.bn1.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2a_w    mapped name: layer1.0.conv1.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2b_b    mapped name: layer1.0.conv2.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2b_bn_b mapped name: layer1.0.bn2.bias
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2b_bn_s mapped name: layer1.0.bn2.weight
2019-03-04 15:44:25,852 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2b_w    mapped name: layer1.0.conv2.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2c_b    mapped name: layer1.0.conv3.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2c_bn_b mapped name: layer1.0.bn3.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2c_bn_s mapped name: layer1.0.bn3.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_0_branch2c_w    mapped name: layer1.0.conv3.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2a_b    mapped name: layer1.1.conv1.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2a_bn_b mapped name: layer1.1.bn1.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2a_bn_s mapped name: layer1.1.bn1.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2a_w    mapped name: layer1.1.conv1.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2b_b    mapped name: layer1.1.conv2.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2b_bn_b mapped name: layer1.1.bn2.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2b_bn_s mapped name: layer1.1.bn2.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2b_w    mapped name: layer1.1.conv2.weight
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2c_b    mapped name: layer1.1.conv3.bias
2019-03-04 15:44:25,853 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2c_bn_b mapped name: layer1.1.bn3.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2c_bn_s mapped name: layer1.1.bn3.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_1_branch2c_w    mapped name: layer1.1.conv3.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2a_b    mapped name: layer1.2.conv1.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2a_bn_b mapped name: layer1.2.bn1.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2a_bn_s mapped name: layer1.2.bn1.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2a_w    mapped name: layer1.2.conv1.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2b_b    mapped name: layer1.2.conv2.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2b_bn_b mapped name: layer1.2.bn2.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2b_bn_s mapped name: layer1.2.bn2.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2b_w    mapped name: layer1.2.conv2.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2c_b    mapped name: layer1.2.conv3.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2c_bn_b mapped name: layer1.2.bn3.bias
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2c_bn_s mapped name: layer1.2.bn3.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res2_2_branch2c_w    mapped name: layer1.2.conv3.weight
2019-03-04 15:44:25,854 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch1_b     mapped name: layer2.0.downsample.0.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch1_bn_b  mapped name: layer2.0.downsample.1.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch1_bn_s  mapped name: layer2.0.downsample.1.weight
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch1_w     mapped name: layer2.0.downsample.0.weight
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2a_b    mapped name: layer2.0.conv1.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2a_bn_b mapped name: layer2.0.bn1.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2a_bn_s mapped name: layer2.0.bn1.weight
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2a_w    mapped name: layer2.0.conv1.weight
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2b_b    mapped name: layer2.0.conv2.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2b_bn_b mapped name: layer2.0.bn2.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2b_bn_s mapped name: layer2.0.bn2.weight
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2b_w    mapped name: layer2.0.conv2.weight
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2c_b    mapped name: layer2.0.conv3.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2c_bn_b mapped name: layer2.0.bn3.bias
2019-03-04 15:44:25,855 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2c_bn_s mapped name: layer2.0.bn3.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_0_branch2c_w    mapped name: layer2.0.conv3.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2a_b    mapped name: layer2.1.conv1.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2a_bn_b mapped name: layer2.1.bn1.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2a_bn_s mapped name: layer2.1.bn1.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2a_w    mapped name: layer2.1.conv1.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2b_b    mapped name: layer2.1.conv2.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2b_bn_b mapped name: layer2.1.bn2.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2b_bn_s mapped name: layer2.1.bn2.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2b_w    mapped name: layer2.1.conv2.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2c_b    mapped name: layer2.1.conv3.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2c_bn_b mapped name: layer2.1.bn3.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2c_bn_s mapped name: layer2.1.bn3.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_1_branch2c_w    mapped name: layer2.1.conv3.weight
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2a_b    mapped name: layer2.2.conv1.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2a_bn_b mapped name: layer2.2.bn1.bias
2019-03-04 15:44:25,856 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2a_bn_s mapped name: layer2.2.bn1.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2a_w    mapped name: layer2.2.conv1.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2b_b    mapped name: layer2.2.conv2.bias
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2b_bn_b mapped name: layer2.2.bn2.bias
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2b_bn_s mapped name: layer2.2.bn2.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2b_w    mapped name: layer2.2.conv2.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2c_b    mapped name: layer2.2.conv3.bias
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2c_bn_b mapped name: layer2.2.bn3.bias
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2c_bn_s mapped name: layer2.2.bn3.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_2_branch2c_w    mapped name: layer2.2.conv3.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2a_b    mapped name: layer2.3.conv1.bias
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2a_bn_b mapped name: layer2.3.bn1.bias
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2a_bn_s mapped name: layer2.3.bn1.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2a_w    mapped name: layer2.3.conv1.weight
2019-03-04 15:44:25,857 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2b_b    mapped name: layer2.3.conv2.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loaStemWithFixedBatchNormding INFO: C2 name: res3_3_branch2b_bn_b mapped name: layer2.3.bn2.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2b_bn_s mapped name: layer2.3.bn2.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2b_w    mapped name: layer2.3.conv2.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2c_b    mapped name: layer2.3.conv3.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2c_bn_b mapped name: layer2.3.bn3.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2c_bn_s mapped name: layer2.3.bn3.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res3_3_branch2c_w    mapped name: layer2.3.conv3.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch1_b     mapped name: layer3.0.downsample.0.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch1_bn_b  mapped name: layer3.0.downsample.1.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch1_bn_s  mapped name: layer3.0.downsample.1.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch1_w     mapped name: layer3.0.downsample.0.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2a_b    mapped name: layer3.0.conv1.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2a_bn_b mapped name: layer3.0.bn1.bias
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2a_bn_s mapped name: layer3.0.bn1.weight
2019-03-04 15:44:25,858 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2a_w    mapped name: layer3.0.conv1.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2b_b    mapped name: layer3.0.conv2.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2b_bn_b mapped name: layer3.0.bn2.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2b_bn_s mapped name: layer3.0.bn2.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2b_w    mapped name: layer3.0.conv2.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2c_b    mapped name: layer3.0.conv3.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2c_bn_b mapped name: layer3.0.bn3.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2c_bn_s mapped name: layer3.0.bn3.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_0_branch2c_w    mapped name: layer3.0.conv3.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2a_b    mapped name: layer3.1.conv1.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2a_bn_b mapped name: layer3.1.bn1.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2a_bn_s mapped name: layer3.1.bn1.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2a_w    mapped name: layer3.1.conv1.weight
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2b_b    mapped name: layer3.1.conv2.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2b_bn_b mapped name: layer3.1.bn2.bias
2019-03-04 15:44:25,859 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2b_bn_s mapped name: layer3.1.bn2.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2b_w    mapped name: layer3.1.conv2.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2c_b    mapped name: layer3.1.conv3.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2c_bn_b mapped name: layer3.1.bn3.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2c_bn_s mapped name: layer3.1.bn3.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_1_branch2c_w    mapped name: layer3.1.conv3.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2a_b    mapped name: layer3.2.conv1.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2a_bn_b mapped name: layer3.2.bn1.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2a_bn_s mapped name: layer3.2.bn1.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2a_w    mapped name: layer3.2.conv1.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2b_b    mapped name: layer3.2.conv2.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2b_bn_b mapped name: layer3.2.bn2.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2b_bn_s mapped name: layer3.2.bn2.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2b_w    mapped name: layer3.2.conv2.weight
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2c_b    mapped name: layer3.2.conv3.bias
2019-03-04 15:44:25,860 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2c_bn_b mapped name: layer3.2.bn3.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2c_bn_s mapped name: layer3.2.bn3.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_2_branch2c_w    mapped name: layer3.2.conv3.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2a_b    mapped name: layer3.3.conv1.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2a_bn_b mapped name: layer3.3.bn1.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2a_bn_s mapped name: layer3.3.bn1.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2a_w    mapped name: layer3.3.conv1.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2b_b    mapped name: layer3.3.conv2.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2b_bn_b mapped name: layer3.3.bn2.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2b_bn_s mapped name: layer3.3.bn2.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2b_w    mapped name: layer3.3.conv2.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2c_b    mapped name: layer3.3.conv3.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2c_bn_b mapped name: layer3.3.bn3.bias
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2c_bn_s mapped name: layer3.3.bn3.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_3_branch2c_w    mapped name: layer3.3.conv3.weight
2019-03-04 15:44:25,861 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2a_b    mapped name: layer3.4.conv1.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2a_bn_b mapped name: layer3.4.bn1.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2a_bn_s mapped name: layer3.4.bn1.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2a_w    mapped name: layer3.4.conv1.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2b_b    mapped name: layer3.4.conv2.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2b_bn_b mapped name: layer3.4.bn2.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2b_bn_s mapped name: layer3.4.bn2.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2b_w    mapped name: layer3.4.conv2.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2c_b    mapped name: layer3.4.conv3.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2c_bn_b mapped name: layer3.4.bn3.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2c_bn_s mapped name: layer3.4.bn3.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_4_branch2c_w    mapped name: layer3.4.conv3.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2a_b    mapped name: layer3.5.conv1.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2a_bn_b mapped name: layer3.5.bn1.bias
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2a_bn_s mapped name: layer3.5.bn1.weight
2019-03-04 15:44:25,862 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2a_w    mapped name: layer3.5.conv1.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2b_b    mapped name: layer3.5.conv2.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2b_bn_b mapped name: layer3.5.bn2.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2b_bn_s mapped name: layer3.5.bn2.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2b_w    mapped name: layer3.5.conv2.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2c_b    mapped name: layer3.5.conv3.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2c_bn_b mapped name: layer3.5.bn3.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2c_bn_s mapped name: layer3.5.bn3.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res4_5_branch2c_w    mapped name: layer3.5.conv3.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch1_b     mapped name: layer4.0.downsample.0.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch1_bn_b  mapped name: layer4.0.downsample.1.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch1_bn_s  mapped name: layer4.0.downsample.1.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch1_w     mapped name: layer4.0.downsample.0.weight
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2a_b    mapped name: layer4.0.conv1.bias
2019-03-04 15:44:25,863 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2a_bn_b mapped name: layer4.0.bn1.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2a_bn_s mapped name: layer4.0.bn1.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2a_w    mapped name: layer4.0.conv1.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2b_b    mapped name: layer4.0.conv2.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2b_bn_b mapped name: layer4.0.bn2.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2b_bn_s mapped name: layer4.0.bn2.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2b_w    mapped name: layer4.0.conv2.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2c_b    mapped name: layer4.0.conv3.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2c_bn_b mapped name: layer4.0.bn3.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2c_bn_s mapped name: layer4.0.bn3.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_0_branch2c_w    mapped name: layer4.0.conv3.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2a_b    mapped name: layer4.1.conv1.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2a_bn_b mapped name: layer4.1.bn1.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2a_bn_s mapped name: layer4.1.bn1.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2a_w    mapped name: layer4.1.conv1.weight
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2b_b    mapped name: layer4.1.conv2.bias
2019-03-04 15:44:25,864 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2b_bn_b mapped name: layer4.1.bn2.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2b_bn_s mapped name: layer4.1.bn2.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2b_w    mapped name: layer4.1.conv2.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2c_b    mapped name: layer4.1.conv3.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2c_bn_b mapped name: layer4.1.bn3.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2c_bn_s mapped name: layer4.1.bn3.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_1_branch2c_w    mapped name: layer4.1.conv3.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2a_b    mapped name: layer4.2.conv1.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2a_bn_b mapped name: layer4.2.bn1.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2a_bn_s mapped name: layer4.2.bn1.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2a_w    mapped name: layer4.2.conv1.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2b_b    mapped name: layer4.2.conv2.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2b_bn_b mapped name: layer4.2.bn2.bias
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2b_bn_s mapped name: layer4.2.bn2.weight
2019-03-04 15:44:25,865 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2b_w    mapped name: layer4.2.conv2.weight
2019-03-04 15:44:25,866 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2c_b    mapped name: layer4.2.conv3.bias
2019-03-04 15:44:25,866 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2c_bn_b mapped name: layer4.2.bn3.bias
2019-03-04 15:44:25,866 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2c_bn_s mapped name: layer4.2.bn3.weight
2019-03-04 15:44:25,866 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res5_2_branch2c_w    mapped name: layer4.2.conv3.weight
2019-03-04 15:44:25,866 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res_conv1_bn_b       mapped name: bn1.bias
2019-03-04 15:44:25,866 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: res_conv1_bn_s       mapped name: bn1.weight
2019-03-04 15:44:25,882 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.bn1.bias                       loaded from layer1.0.bn1.bias            of shape (64,)
2019-03-04 15:44:25,882 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.bn1.weight                     loaded from layer1.0.bn1.weight          of shape (64,)
2019-03-04 15:44:25,882 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.bn2.bias                       loaded from layer1.0.bn2.bias            of shape (64,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.bn2.weight                     loaded from layer1.0.bn2.weight          of shape (64,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.bn3.bias                       loaded from layer1.0.bn3.bias            of shape (256,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.bn3.weight                     loaded from layer1.0.bn3.weight          of shape (256,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.conv1.weight                   loaded from layer1.0.conv1.weight        of shape (64, 64, 1, 1)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.conv2.weight                   loaded from layer1.0.conv2.weight        of shape (64, 64, 3, 3)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.conv3.weight                   loaded from layer1.0.conv3.weight        of shape (256, 64, 1, 1)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.downsample.0.weight            loaded from layer1.0.downsample.0.weight of shape (256, 64, 1, 1)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.downsample.1.bias              loaded from layer1.0.downsample.1.bias   of shape (256,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.0.downsample.1.weight            loaded from layer1.0.downsample.1.weight of shape (256,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.bn1.bias                       loaded from layer1.1.bn1.bias            of shape (64,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.bn1.weight                     loaded from layer1.1.bn1.weight          of shape (64,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.bn2.bias                       loaded from layer1.1.bn2.bias            of shape (64,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.bn2.weight                     loaded from layer1.1.bn2.weight          of shape (64,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.bn3.bias                       loaded from layer1.1.bn3.bias            of shape (256,)
2019-03-04 15:44:25,883 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.bn3.weight                     loaded from layer1.1.bn3.weight          of shape (256,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.conv1.weight                   loaded from layer1.1.conv1.weight        of shape (64, 256, 1, 1)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.conv2.weight                   loaded from layer1.1.conv2.weight        of shape (64, 64, 3, 3)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.1.conv3.weight                   loaded from layer1.1.conv3.weight        of shape (256, 64, 1, 1)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.bn1.bias                       loaded from layer1.2.bn1.bias            of shape (64,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.bn1.weight                     loaded from layer1.2.bn1.weight          of shape (64,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.bn2.bias                       loaded from layer1.2.bn2.bias            of shape (64,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.bn2.weight                     loaded from layer1.2.bn2.weight          of shape (64,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.bn3.bias                       loaded from layer1.2.bn3.bias            of shape (256,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.bn3.weight                     loaded from layer1.2.bn3.weight          of shape (256,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.conv1.weight                   loaded from layer1.2.conv1.weight        of shape (64, 256, 1, 1)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.conv2.weight                   loaded from layer1.2.conv2.weight        of shape (64, 64, 3, 3)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer1.2.conv3.weight                   loaded from layer1.2.conv3.weight        of shape (256, 64, 1, 1)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.bn1.bias                       loaded from layer2.0.bn1.bias            of shape (128,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.bn1.weight                     loaded from layer2.0.bn1.weight          of shape (128,)
2019-03-04 15:44:25,884 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.bn2.bias                       loaded from layer2.0.bn2.bias            of shape (128,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.bn2.weight                     loaded from layer2.0.bn2.weight          of shape (128,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.bn3.bias                       loaded from layer2.0.bn3.bias            of shape (512,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.bn3.weight                     loaded from layer2.0.bn3.weight          of shape (512,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.conv1.weight                   loaded from layer2.0.conv1.weight        of shape (128, 256, 1, 1)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.conv2.weight                   loaded from layer2.0.conv2.weight        of shape (128, 128, 3, 3)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.conv3.weight                   loaded from layer2.0.conv3.weight        of shape (512, 128, 1, 1)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.downsample.0.weight            loaded from layer2.0.downsample.0.weight of shape (512, 256, 1, 1)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.downsample.1.bias              loaded from layer2.0.downsample.1.bias   of shape (512,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.0.downsample.1.weight            loaded from layer2.0.downsample.1.weight of shape (512,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.bn1.bias                       loaded from layer2.1.bn1.bias            of shape (128,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.bn1.weight                     loaded from layer2.1.bn1.weight          of shape (128,)
2019-03-04 15:44:25,885 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.bn2.bias                       loaded from layer2.1.bn2.bias            of shape (128,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.bn2.weight                     loaded from layer2.1.bn2.weight          of shape (128,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.bn3.bias                       loaded from layer2.1.bn3.bias            of shape (512,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.bn3.weight                     loaded from layer2.1.bn3.weight          of shape (512,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.conv1.weight                   loaded from layer2.1.conv1.weight        of shape (128, 512, 1, 1)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.conv2.weight                   loaded from layer2.1.conv2.weight        of shape (128, 128, 3, 3)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.1.conv3.weight                   loaded from layer2.1.conv3.weight        of shape (512, 128, 1, 1)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.bn1.bias                       loaded from layer2.2.bn1.bias            of shape (128,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.bn1.weight                     loaded from layer2.2.bn1.weight          of shape (128,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.bn2.bias                       loaded from layer2.2.bn2.bias            of shape (128,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.bn2.weight                     loaded from layer2.2.bn2.weight          of shape (128,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.bn3.bias                       loaded from layer2.2.bn3.bias            of shape (512,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.bn3.weight                     loaded from layer2.2.bn3.weight          of shape (512,)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.conv1.weight                   loaded from layer2.2.conv1.weight        of shape (128, 512, 1, 1)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.conv2.weight                   loaded from layer2.2.conv2.weight        of shape (128, 128, 3, 3)
2019-03-04 15:44:25,886 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.2.conv3.weight                   loaded from layer2.2.conv3.weight        of shape (512, 128, 1, 1)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.bn1.bias                       loaded from layer2.3.bn1.bias            of shape (128,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.bn1.weight                     loaded from layer2.3.bn1.weight          of shape (128,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.bn2.bias                       loaded from layer2.3.bn2.bias            of shape (128,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.bn2.weight                     loaded from layer2.3.bn2.weight          of shape (128,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.bn3.bias                       loaded from layer2.3.bn3.bias            of shape (512,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.bn3.weight                     loaded from layer2.3.bn3.weight          of shape (512,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.conv1.weight                   loaded from layer2.3.conv1.weight        of shape (128, 512, 1, 1)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.conv2.weight                   loaded from layer2.3.conv2.weight        of shape (128, 128, 3, 3)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer2.3.conv3.weight                   loaded from layer2.3.conv3.weight        of shape (512, 128, 1, 1)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.bn1.bias                       loaded from layer3.0.bn1.bias            of shape (256,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.bn1.weight                     loaded from layer3.0.bn1.weight          of shape (256,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.bn2.bias                       loaded from layer3.0.bn2.bias            of shape (256,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.bn2.weight                     loaded from layer3.0.bn2.weight          of shape (256,)
2019-03-04 15:44:25,887 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.bn3.bias                       loaded from layer3.0.bn3.bias            of shape (1024,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.bn3.weight                     loaded from layer3.0.bn3.weight          of shape (1024,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.conv1.weight                   loaded from layer3.0.conv1.weight        of shape (256, 512, 1, 1)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.conv2.weight                   loaded from layer3.0.conv2.weight        of shape (256, 256, 3, 3)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.conv3.weight                   loaded from layer3.0.conv3.weight        of shape (1024, 256, 1, 1)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.downsample.0.weight            loaded from layer3.0.downsample.0.weight of shape (1024, 512, 1, 1)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.downsample.1.bias              loaded from layer3.0.downsample.1.bias   of shape (1024,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.0.downsample.1.weight            loaded from layer3.0.downsample.1.weight of shape (1024,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.bn1.bias                       loaded from layer3.1.bn1.bias            of shape (256,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.bn1.weight                     loaded from layer3.1.bn1.weight          of shape (256,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.bn2.bias                       loaded from layer3.1.bn2.bias            of shape (256,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.bn2.weight                     loaded from layer3.1.bn2.weight          of shape (256,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.bn3.bias                       loaded from layer3.1.bn3.bias            of shape (1024,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.bn3.weight                     loaded from layer3.1.bn3.weight          of shape (1024,)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.conv1.weight                   loaded from layer3.1.conv1.weight        of shape (256, 1024, 1, 1)
2019-03-04 15:44:25,888 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.conv2.weight                   loaded from layer3.1.conv2.weight        of shape (256, 256, 3, 3)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.1.conv3.weight                   loaded from layer3.1.conv3.weight        of shape (1024, 256, 1, 1)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.bn1.bias                       loaded from layer3.2.bn1.bias            of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.bn1.weight                     loaded from layer3.2.bn1.weight          of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.bn2.bias                       loaded from layer3.2.bn2.bias            of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.bn2.weight                     loaded from layer3.2.bn2.weight          of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.bn3.bias                       loaded from layer3.2.bn3.bias            of shape (1024,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.bn3.weight                     loaded from layer3.2.bn3.weight          of shape (1024,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.conv1.weight                   loaded from layer3.2.conv1.weight        of shape (256, 1024, 1, 1)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.conv2.weight                   loaded from layer3.2.conv2.weight        of shape (256, 256, 3, 3)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.2.conv3.weight                   loaded from layer3.2.conv3.weight        of shape (1024, 256, 1, 1)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.bn1.bias                       loaded from layer3.3.bn1.bias            of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.bn1.weight                     loaded from layer3.3.bn1.weight          of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.bn2.bias                       loaded from layer3.3.bn2.bias            of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.bn2.weight                     loaded from layer3.3.bn2.weight          of shape (256,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.bn3.bias                       loaded from layer3.3.bn3.bias            of shape (1024,)
2019-03-04 15:44:25,889 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.bn3.weight                     loaded from layer3.3.bn3.weight          of shape (1024,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.conv1.weight                   loaded from layer3.3.conv1.weight        of shape (256, 1024, 1, 1)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.conv2.weight                   loaded from layer3.3.conv2.weight        of shape (256, 256, 3, 3)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.3.conv3.weight                   loaded from layer3.3.conv3.weight        of shape (1024, 256, 1, 1)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.bn1.bias                       loaded from layer3.4.bn1.bias            of shape (256,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.bn1.weight                     loaded from layer3.4.bn1.weight          of shape (256,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.bn2.bias                       loaded from layer3.4.bn2.bias            of shape (256,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.bn2.weight                     loaded from layer3.4.bn2.weight          of shape (256,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.bn3.bias                       loaded from layer3.4.bn3.bias            of shape (1024,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.bn3.weight                     loaded from layer3.4.bn3.weight          of shape (1024,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.conv1.weight                   loaded from layer3.4.conv1.weight        of shape (256, 1024, 1, 1)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.conv2.weight                   loaded from layer3.4.conv2.weight        of shape (256, 256, 3, 3)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.4.conv3.weight                   loaded from layer3.4.conv3.weight        of shape (1024, 256, 1, 1)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.bn1.bias                       loaded from layer3.5.bn1.bias            of shape (256,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.bn1.weight                     loaded from layer3.5.bn1.weight          of shape (256,)
2019-03-04 15:44:25,890 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.bn2.bias                       loaded from layer3.5.bn2.bias            of shape (256,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.bn2.weight                     loaded from layer3.5.bn2.weight          of shape (256,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.bn3.bias                       loaded from layer3.5.bn3.bias            of shape (1024,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.bn3.weight                     loaded from layer3.5.bn3.weight          of shape (1024,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.conv1.weight                   loaded from layer3.5.conv1.weight        of shape (256, 1024, 1, 1)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.conv2.weight                   loaded from layer3.5.conv2.weight        of shape (256, 256, 3, 3)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer3.5.conv3.weight                   loaded from layer3.5.conv3.weight        of shape (1024, 256, 1, 1)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.bn1.bias                       loaded from layer4.0.bn1.bias            of shape (512,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.bn1.weight                     loaded from layer4.0.bn1.weight          of shape (512,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.bn2.bias                       loaded from layer4.0.bn2.bias            of shape (512,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.bn2.weight                     loaded from layer4.0.bn2.weight          of shape (512,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.bn3.bias                       loaded from layer4.0.bn3.bias            of shape (2048,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.bn3.weight                     loaded from layer4.0.bn3.weight          of shape (2048,)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.conv1.weight                   loaded from layer4.0.conv1.weight        of shape (512, 1024, 1, 1)
2019-03-04 15:44:25,891 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.conv2.weight                   loaded from layer4.0.conv2.weight        of shape (512, 512, 3, 3)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.conv3.weight                   loaded from layer4.0.conv3.weight        of shape (2048, 512, 1, 1)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.downsample.0.weight            loaded from layer4.0.downsample.0.weight of shape (2048, 1024, 1, 1)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.downsample.1.bias              loaded from layer4.0.downsample.1.bias   of shape (2048,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.0.downsample.1.weight            loaded from layer4.0.downsample.1.weight of shape (2048,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.bn1.bias                       loaded from layer4.1.bn1.bias            of shape (512,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.bn1.weight                     loaded from layer4.1.bn1.weight          of shape (512,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.bn2.bias                       loaded from layer4.1.bn2.bias            of shape (512,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.bn2.weight                     loaded from layer4.1.bn2.weight          of shape (512,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.bn3.bias                       loaded from layer4.1.bn3.bias            of shape (2048,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.bn3.weight                     loaded from layer4.1.bn3.weight          of shape (2048,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.conv1.weight                   loaded from layer4.1.conv1.weight        of shape (512, 2048, 1, 1)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.conv2.weight                   loaded from layer4.1.conv2.weight        of shape (512, 512, 3, 3)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.1.conv3.weight                   loaded from layer4.1.conv3.weight        of shape (2048, 512, 1, 1)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.bn1.bias                       loaded from layer4.2.bn1.bias            of shape (512,)
2019-03-04 15:44:25,892 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.bn1.weight                     loaded from layer4.2.bn1.weight          of shape (512,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.bn2.bias                       loaded from layer4.2.bn2.bias            of shape (512,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.bn2.weight                     loaded from layer4.2.bn2.weight          of shape (512,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.bn3.bias                       loaded from layer4.2.bn3.bias            of shape (2048,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.bn3.weight                     loaded from layer4.2.bn3.weight          of shape (2048,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.conv1.weight                   loaded from layer4.2.conv1.weight        of shape (512, 2048, 1, 1)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.conv2.weight                   loaded from layer4.2.conv2.weight        of shape (512, 512, 3, 3)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.layer4.2.conv3.weight                   loaded from layer4.2.conv3.weight        of shape (2048, 512, 1, 1)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.stem.bn1.bias                           loaded from bn1.bias                     of shape (64,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.stem.bn1.weight                         loaded from bn1.weight                   of shape (64,)
2019-03-04 15:44:25,893 maskrcnn_benchmark.utils.model_serialization INFO: backbone.body.stem.conv1.weight                       loaded from conv1.weight                 of shape (64, 3, 7, 7)
2019-03-04 15:44:25,988 maskrcnn_benchmark.data.build WARNING: When using more than one image per GPU you may encounter an out-of-memory (OOM) error if your GPU does not have sufficient memory. If this happens, you can reduce SOLVER.IMS_PER_BATCH (for training) or TEST.IMS_PER_BATCH (for inference). For training, you must also adjust the learning rate and schedule length according to the linear scaling rule. See for example: https://github.com/facebookresearch/Detectron/blob/master/configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml#L14
2019-03-04 15:44:36,408 maskrcnn_benchmark.trainer INFO: Start training
2019-03-04 15:45:06,843 maskrcnn_benchmark.trainer INFO: eta: 2:08:19  iter: 20  loss: 8.4845 (8.6096)  loss_classifier: 0.0823 (0.1161)  loss_box_reg: 0.0063 (0.0144)  loss_kp: 7.9658 (7.9423)  loss_objectness: 0.3663 (0.4253)  loss_rpn_box_reg: 0.0222 (0.1115)  time: 1.4842 (1.5217)  data: 0.0101 (0.0850)  lr: 0.001793  max mem: 3803
2019-03-04 19:02:22,703 maskrcnn_benchmark INFO: Using 1 GPUs
2019-03-04 19:02:22,703 maskrcnn_benchmark INFO: Namespace(config_file='../configs/e2e_keypoint_rcnn_R_50_FPN_debug.yaml', distributed=False, local_rank=0, opts=[], skip_test=False)
2019-03-04 19:02:22,704 maskrcnn_benchmark INFO: Collecting env info (might take some time)
2019-03-04 19:02:26,314 maskrcnn_benchmark INFO: 
PyTorch version: 1.0.0
Is debug build: No
CUDA used to build PyTorch: 9.0.176

OS: Ubuntu 14.04.5 LTS
GCC version: (Ubuntu 4.9.4-2ubuntu1~14.04.1) 4.9.4
CMake version: version 3.5.1

Python version: 3.6
Is CUDA available: Yes
CUDA runtime version: Could not collect
GPU models and configuration: 
GPU 0: Quadro K4000
GPU 1: Tesla K40c

Nvidia driver version: 384.130
cuDNN version: Probably one of the following:
/usr/local/MATLAB/R2016b/bin/glnxa64/libcudnn.so.4.0.7
/usr/local/cuda-8.0/lib64/libcudnn.so.6.0.21
/usr/local/cuda-8.0/lib64/libcudnn_static.a
/usr/local/cuda8-cudnn7/lib64/libcudnn.so.7.2.1
/usr/local/cuda8-cudnn7/lib64/libcudnn_static.a
/usr/local/lib/libcudnn.so.5.1.10
/usr/local/lib/libcudnn_static.a

Versions of relevant libraries:
[pip] numpy (1.11.3)
[conda] Could not collect
        Pillow (5.4.1)
2019-03-04 19:02:26,315 maskrcnn_benchmark INFO: Loaded configuration file ../configs/e2e_keypoint_rcnn_R_50_FPN_debug.yaml
2019-03-04 19:02:26,315 maskrcnn_benchmark INFO: 
MODEL:
  META_ARCHITECTURE: "GeneralizedRCNN"
  WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"
  BACKBONE:
    CONV_BODY: "R-50-FPN"
  RESNETS:
    BACKBONE_OUT_CHANNELS: 256
  RPN:
    USE_FPN: True
    ANCHOR_STRIDE: (4, 8, 16, 32, 64)
    PRE_NMS_TOP_N_TRAIN: 2000  # Per FPN level before nms。RPN 生成proposals的个数,前多少名。然后运用RPN得RPN_POST_NMS_TOP_N
    PRE_NMS_TOP_N_TEST: 1000
    POST_NMS_TOP_N_TEST: 1000
    FPN_POST_NMS_TOP_N_TEST: 1000 #Number of top scoring RPN proposals to keep after combining proposals from
## all FPN levels
  ROI_HEADS:
    USE_FPN: True
  ROI_BOX_HEAD:
    POOLER_RESOLUTION: 7
    POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125)
    POOLER_SAMPLING_RATIO: 2
    FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor"
    PREDICTOR: "FPNPredictor"
    NUM_CLASSES: 2
  ROI_KEYPOINT_HEAD:
    POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125)
    FEATURE_EXTRACTOR: "KeypointRCNNFeatureExtractor"
    PREDICTOR: "KeypointRCNNPredictor"
    POOLER_RESOLUTION: 14
    POOLER_SAMPLING_RATIO: 2
    RESOLUTION: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
    SHARE_BOX_FEATURE_EXTRACTOR: False
  KEYPOINT_ON: True

DATASETS:
  TRAIN: ("keypoints_coco_2014_train", "keypoints_coco_2014_valminusminival",)
  TEST: ("keypoints_coco_2014_minival",)
INPUT:
  MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
DATALOADER:
  SIZE_DIVISIBILITY: 32
SOLVER:
  BASE_LR: 0.005
  WEIGHT_DECAY: 0.0001
  STEPS: (5020, 5060)
  MAX_ITER: 5080
  CHECKPOINT_PERIOD: 5000
  IMS_PER_BATCH: 2

OUTPUT_DIR : 'outputs/debug'
TEST:
  IMS_PER_BATCH: 1
 
2019-03-04 19:02:26,316 maskrcnn_benchmark INFO: Running with config:
DATALOADER:
  ASPECT_RATIO_GROUPING: True
  NUM_WORKERS: 4
  SIZE_DIVISIBILITY: 32
DATASETS:
  TEST: ('keypoints_coco_2014_minival',)
  TRAIN: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
INPUT:
  MAX_SIZE_TEST: 1333
  MAX_SIZE_TRAIN: 1333
  MIN_SIZE_TEST: 800
  MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
  PIXEL_MEAN: [102.9801, 115.9465, 122.7717]
  PIXEL_STD: [1.0, 1.0, 1.0]
  TO_BGR255: True
MODEL:
  BACKBONE:
    CONV_BODY: R-50-FPN
    FREEZE_CONV_BODY_AT: 2
    USE_GN: False
  CLS_AGNOSTIC_BBOX_REG: False
  DEVICE: cuda
  FBNET:
    ARCH: default
    ARCH_DEF: 
    BN_TYPE: bn
    DET_HEAD_BLOCKS: []
    DET_HEAD_LAST_SCALE: 1.0
    DET_HEAD_STRIDE: 0
    DW_CONV_SKIP_BN: True
    DW_CONV_SKIP_RELU: True
    KPTS_HEAD_BLOCKS: []
    KPTS_HEAD_LAST_SCALE: 0.0
    KPTS_HEAD_STRIDE: 0
    MASK_HEAD_BLOCKS: []
    MASK_HEAD_LAST_SCALE: 0.0
    MASK_HEAD_STRIDE: 0
    RPN_BN_TYPE: 
    RPN_HEAD_BLOCKS: 0
    SCALE_FACTOR: 1.0
    WIDTH_DIVISOR: 1
  FPN:
    USE_GN: False
    USE_RELU: False
  GROUP_NORM:
    DIM_PER_GP: -1
    EPSILON: 1e-05
    NUM_GROUPS: 32
  KEYPOINT_ON: True
  MASK_ON: False
  META_ARCHITECTURE: GeneralizedRCNN
  RESNETS:
    BACKBONE_OUT_CHANNELS: 256
    NUM_GROUPS: 1
    RES2_OUT_CHANNELS: 256
    RES5_DILATION: 1
    STEM_FUNC: StemWithFixedBatchNorm
    STEM_OUT_CHANNELS: 64
    STRIDE_IN_1X1: True
    TRANS_FUNC: BottleneckWithFixedBatchNorm
    WIDTH_PER_GROUP: 64
  RETINANET:
    ANCHOR_SIZES: (32, 64, 128, 256, 512)
    ANCHOR_STRIDES: (8, 16, 32, 64, 128)
    ASPECT_RATIOS: (0.5, 1.0, 2.0)
    BBOX_REG_BETA: 0.11
    BBOX_REG_WEIGHT: 4.0
    BG_IOU_THRESHOLD: 0.4
    FG_IOU_THRESHOLD: 0.5
    INFERENCE_TH: 0.05
    LOSS_ALPHA: 0.25
    LOSS_GAMMA: 2.0
    NMS_TH: 0.4
    NUM_CLASSES: 81
    NUM_CONVS: 4
    OCTAVE: 2.0
    PRE_NMS_TOP_N: 1000
    PRIOR_PROB: 0.01
    SCALES_PER_OCTAVE: 3
    STRADDLE_THRESH: 0
    USE_C5: True
  RETINANET_ON: False
  ROI_BOX_HEAD:
    CONV_HEAD_DIM: 256
    DILATION: 1
    FEATURE_EXTRACTOR: FPN2MLPFeatureExtractor
    MLP_HEAD_DIM: 1024
    NUM_CLASSES: 2
    NUM_STACKED_CONVS: 4
    POOLER_RESOLUTION: 7
    POOLER_SAMPLING_RATIO: 2
    POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125)
    PREDICTOR: FPNPredictor
    USE_GN: False
  ROI_HEADS:
    BATCH_SIZE_PER_IMAGE: 512
    BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
    BG_IOU_THRESHOLD: 0.5
    DETECTIONS_PER_IMG: 100
    FG_IOU_THRESHOLD: 0.5
    NMS: 0.5
    POSITIVE_FRACTION: 0.25
    SCORE_THRESH: 0.05
    USE_FPN: True
  ROI_KEYPOINT_HEAD:
    CONV_LAYERS: (512, 512, 512, 512, 512, 512, 512, 512)
    FEATURE_EXTRACTOR: KeypointRCNNFeatureExtractor
    MLP_HEAD_DIM: 1024
    NUM_CLASSES: 17
    POOLER_RESOLUTION: 14
    POOLER_SAMPLING_RATIO: 2
    POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125)
    PREDICTOR: KeypointRCNNPredictor
    RESOLUTION: 56
    SHARE_BOX_FEATURE_EXTRACTOR: False
  ROI_MASK_HEAD:
    CONV_LAYERS: (256, 256, 256, 256)
    DILATION: 1
    FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor
    MLP_HEAD_DIM: 1024
    POOLER_RESOLUTION: 14
    POOLER_SAMPLING_RATIO: 0
    POOLER_SCALES: (0.0625,)
    POSTPROCESS_MASKS: False
    POSTPROCESS_MASKS_THRESHOLD: 0.5
    PREDICTOR: MaskRCNNC4Predictor
    RESOLUTION: 14
    SHARE_BOX_FEATURE_EXTRACTOR: True
    USE_GN: False
  RPN:
    ANCHOR_SIZES: (32, 64, 128, 256, 512)
    ANCHOR_STRIDE: (4, 8, 16, 32, 64)
    ASPECT_RATIOS: (0.5, 1.0, 2.0)
    BATCH_SIZE_PER_IMAGE: 256
    BG_IOU_THRESHOLD: 0.3
    FG_IOU_THRESHOLD: 0.7
    FPN_POST_NMS_TOP_N_TEST: 1000
    FPN_POST_NMS_TOP_N_TRAIN: 2000
    MIN_SIZE: 0
    NMS_THRESH: 0.7
    POSITIVE_FRACTION: 0.5
    POST_NMS_TOP_N_TEST: 1000
    POST_NMS_TOP_N_TRAIN: 2000
    PRE_NMS_TOP_N_TEST: 1000
    PRE_NMS_TOP_N_TRAIN: 2000
    RPN_HEAD: SingleConvRPNHead
    STRADDLE_THRESH: 0
    USE_FPN: True
  RPN_ONLY: False
  WEIGHT: catalog://ImageNetPretrained/MSRA/R-50
OUTPUT_DIR: outputs/debug
PATHS_CATALOG: /media/hello/helloworld/maskrcnn-keypoint/maskrcnn_benchmark/config/paths_catalog.py
SOLVER:
  BASE_LR: 0.005
  BIAS_LR_FACTOR: 2
  CHECKPOINT_PERIOD: 5000
  GAMMA: 0.1
  IMS_PER_BATCH: 2
  MAX_ITER: 5080
  MOMENTUM: 0.9
  STEPS: (5020, 5060)
  WARMUP_FACTOR: 0.3333333333333333
  WARMUP_ITERS: 500
  WARMUP_METHOD: linear
  WEIGHT_DECAY: 0.0001
  WEIGHT_DECAY_BIAS: 0
TEST:
  DETECTIONS_PER_IMG: 100
  EXPECTED_RESULTS: []
  EXPECTED_RESULTS_SIGMA_TOL: 4
  IMS_PER_BATCH: 2

你可能感兴趣的:(姿态估计逐步)