Spark ML机器学习

Spark提供了常用机器学习算法的实现, 封装于spark.mlspark.mllib中.

spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库.

相对于RDD, DataFrame拥有更丰富的操作API, 可以进行更灵活的操作. 目前, spark.mllib已经进入维护状态, 不再添加新特性.

本文将重点介绍pyspark.ml, 测试环境为Spark 2.1, Python API.

首先介绍pyspark.ml中的几个基类:

  • ML DataSet: 即为pyspark.sql.DataFrame作为数据集使用

  • pyspark.ml.Transformer: 代表将数据集转换到另一个数据集的算法

  • pyspark.ml.Estimator: 代表根据数据和参数创建模型的算法,包含方法
  • fit(dataset, params): 根据训练数据集和参数进行训练, 返回训练好的模型对象

  • pyspark.ml.Model: 代表训练好的模型的基类, 通常由Estimator.fit()创建. 包含的方法有:
  • transform(df): 将输入数据集代入模型变换为输出数据集
  • save(path): 保存训练好的模型
  • load(path): 从文件中加载模型

  • pyspark.ml.Pipeline: 用于将多个步骤组合为管道进行处理, 可以建立线性管道和有向无环图管道.

pyspark.ml下将不同算法封装到不同的包中:

  • pyspark.ml.linalg 线性代数工具包. 包括:
  • Vector
  • DenseVector
  • SparseVector
  • Matrix
  • DenseMatrix
  • SparseMatrix
  • pyspark.ml.feature特征和预处理算法包. 包括:
  • Tokenizer
  • Normalizer
  • StopWordsRemover
  • PCA
  • NGram
  • Word2Vec
  • pyspark.ml.classification分类算法包. 包括:
  • LogisticRegression
  • DecisionTreeClassifier
  • RandomForestClassifier
  • NaiveBayes
  • MultilayerPerceptronClassifier
  • OneVsRest
  • pyspark.ml.clustering 聚类算法包. 包括:
  • KMeans
  • LDA
  • pyspark.ml.regression回归算法包. 包括:
  • LinearRegression
  • GeneralizedLinearRegression
  • DecisionTreeRegressor
  • RandomForestRegressor
  • pyspark.ml.recommendation推荐系统算法包. 包括:
  • ALS
  • pyspark.ml.tuning 校验工具包
  • pyspark.ml.evaluation 评估工具包

pyspark.ml中的算法大多数为Estimator的派生类. 大多数算法类均拥有对应的Model类.

classification.NaiveBayesclassification.NaiveBayesModel. 算法类的fit方法可以生成对应的Model类.

应用示例

pyspark.ml使用了统一风格的接口,这里只展示部分算法.

首先用NaiveBayes分类器做一个二分类:

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
...     Row(label=0.0, weight=0.1, features=Vectors.dense([0.0, 0.0])),
...     Row(label=0.0, weight=0.5, features=Vectors.dense([0.0, 1.0])),
...     Row(label=1.0, weight=1.0, features=Vectors.dense([1.0, 0.0]))])
>>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial", weightCol="weight")
>>> model = nb.fit(df)  # 构造模型
>>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF()
>>> result = model.transform(test0).head()  # 预测
>>> result.prediction
1.0
>>> result.probability
DenseVector([0.32..., 0.67...])
>>> result.rawPrediction
DenseVector([-1.72..., -0.99...])

model.transform将输入的一行(Row)作为一个样本,产生一行输出. 这里我们只输入了一个测试样本, 所以直接使用head()取出唯一一行输出.

使用LogisticRegression和OneVsRest做多分类:

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = sc.parallelize([
...     Row(label=0.0, features=Vectors.dense(1.0, 0.8)),
...     Row(label=1.0, features=Vectors.sparse(2, [], [])),
...     Row(label=2.0, features=Vectors.dense(0.5, 0.5))]).toDF()
>>> lr = LogisticRegression(maxIter=5, regParam=0.01)
>>> ovr = OneVsRest(classifier=lr)
>>> model = ovr.fit(df)
>>> # 进行预测
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 0.0))]).toDF()
>>> model.transform(test0).head().prediction
1.0
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
0.0
>>> test2 = sc.parallelize([Row(features=Vectors.dense(0.5, 0.4))]).toDF()
>>> model.transform(test2).head().prediction
2.0

使用PCA进行降维:

>>> from pyspark.ml.linalg import Vectors
>>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
...     (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
...     (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
>>> df = spark.createDataFrame(data,["features"])
>>> pca = PCA(k=2, inputCol="features", outputCol="pca_features")
>>> model = pca.fit(df)
>>> model.transform(df).head().pca_features
DenseVector([1.648..., -4.013...])

EstimatorTransformer均为PipelineStage的派生类,pipeline由一系列Stage组成.调用pipeline对象的fit方法, 将会依次执行Stage并生成一个最终模型.

>>>from pyspark.ml import Pipeline
>>>from pyspark.ml.classification import LogisticRegression
>>>from pyspark.ml.feature import HashingTF, Tokenizer
>>> data = [
        (0, "a b c d e spark", 1.0),
        (1, "b d", 0.0),
        (2, "spark f g h", 1.0),
        (3, "hadoop mapreduce", 0.0) ]
>>> df = spark.createDataFrame(data, ["id", "text", "label"])
>>> # build pipeline
>>> tokenizer = Tokenizer(inputCol="text", outputCol="words")
>>> hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
>>> lr = LogisticRegression(maxIter=10, regParam=0.001)
>>> pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
>>> # train
>>> model = pipeline.fit(df)
>>> data2 = [
       (4, "spark i j k"),
       (5, "l m n"),
       (6, "spark hadoop spark"),
       (7, "apache hadoop")
]
>>> test = spark.createDataFrame(data2, ["id", "text"])
>>> result = model.transform(test)
>>> result = result.select("id", "text", "probability", "prediction")
>>> result.collect()
[Row(id=4, text=u'spark i j k', probability=DenseVector([0.1596, 0.8404]), prediction=1.0), 
Row(id=5, text=u'l m n', probability=DenseVector([0.8378, 0.1622]), prediction=0.0), 
Row(id=6, text=u'spark hadoop spark', probability=DenseVector([0.0693, 0.9307]), prediction=1.0), 

Row(id=7, text=u'apache hadoop', probability=DenseVector([0.9822, 0.0178]), prediction=0.0)]文章出处:http://www.cnblogs.com/Finley/p/6390530.html

你可能感兴趣的:(Spark ML机器学习)