Flink部署-standalone模式

安装环境信息

flink-1.6.2-bin-hadoop27-scala_2.11.tgz
hadoop-2.7.5
java 1.8
zookeeper 3.4.6
os:centos 6.4

1、下载
直接去flink的社区下载就可以了。http://flink.apache.org/downloads.html
2、解压

 tar -zxvf flink-1.6.2-bin-hadoop27-scala_2.11.tgz 

3、修改环境变量 ~.bash_profile

export FLINK_HOME=/opt/flink-1.6.2
export PATH=$FLINK_HOME/bin:$PATH

4、修改flink-conf.yaml配置文件,先配置一个简单版本,standalone的模式

Hadoop的nameservice
jobmanager.rpc.address: cdh1
jobmanager.rpc.port: 6123
jobmanager.heap.size: 1024m
taskmanager.heap.size: 1024m
taskmanager.numberOfTaskSlots: 4
parallelism.default: 12

5、修改slaves和masters2个文件,用来配置taskManager和JobManager信息

[hadoop@cdh1 conf]$ cat slaves 
cdh2
cdh3
cdh4
cdh5
[hadoop@cdh1 conf]$ cat masters 
cdh1:8081

6、将flink安装所有信息已经环境信息同步到其他机器上面,这里有几台机器就要执行几次

scp .bash_profile hadoop@cdh3:~/.bash_profile
scp -r ./flink-1.6.2 hadoop@cdh3:/opt/

7、启动flink
[hadoop@cdh1 bin]$ ./start-cluster.sh
8、启动完成已经我们可以用jps。分别可以看到JobManager和TaskManager的2个进程

[hadoop@cdh1 bin]$ jps
3866 StandaloneSessionClusterEntrypoint
[hadoop@cdh2 ~]$ jps
3534 TaskManagerRunner

8、登录JobManager的地址查看ui http://192.168.18.160:8081
Flink部署-standalone模式_第1张图片

已经表示搭建完成了,现在我们开始验证一下集群

使用start-scala-shell.sh来验证
${FLINK_HOME}/bin/start-scala-shell.sh是flink提供的交互式clinet,可以用于代码片段的测试,方便开发工作,它有两种启动方式,一种是工作在本地,另一种是工作到集群。本例中因为机器连接非常方便,就直接使用集群进行测试,在开发中,如果集群连接不是非常方便,可以连接到本地,在本地开发测试通过后,再连接到集群进行部署工作。如果程序有依赖的jar包,则可以使用 -a 或 --addclasspath 参数来添加依赖。

1.本地连接

${FLINK_HOME}/bin/start-scala-shell.sh local

2.集群连接

${FLINK_HOME}/bin/start-scala-shell.sh remote  

3.带有依赖包的格式

${FLINK_HOME}/bin/start-scala-shell.sh [local|remote] --addclasspath

4.查看帮助

${FLINK_HOME}/bin/start-scala-shell.sh --help

[hadoop@cdh2 bin]$ ./start-scala-shell.sh --help
Flink Scala Shell
Usage: start-scala-shell.sh [local|remote|yarn] [options] ...

Command: local [options]
Starts Flink scala shell with a local Flink cluster
  -a, --addclasspath 
                           Specifies additional jars to be used in Flink
Command: remote [options]  
Starts Flink scala shell connecting to a remote cluster
                     Remote host name as string
                     Remote port as integer

  -a, --addclasspath 
                           Specifies additional jars to be used in Flink
Command: yarn [options]
Starts Flink scala shell connecting to a yarn cluster
  -n, --container arg      Number of YARN container to allocate (= Number of TaskManagers)
  -jm, --jobManagerMemory arg
                           Memory for JobManager container
  -nm, --name       Set a custom name for the application on YARN
  -qu, --queue        Specifies YARN queue
  -s, --slots         Number of slots per TaskManager
  -tm, --taskManagerMemory 
                           Memory per TaskManager container
  -a, --addclasspath 
                           Specifies additional jars to be used in Flink
  --configDir       The configuration directory.
  -h, --help               Prints this usage text

我们 使用集群模式去验证

[hadoop@cdh1 bin]$ ./start-scala-shell.sh remote 192.168.18.160 8081

运行如下案例代码

Scala> val text = benv.fromElements(
  "To be, or not to be,--that is the question:--",
  "Whether 'tis nobler in the mind to suffer",
  "The slings and arrows of outrageous fortune",
  "Or to take arms against a sea of troubles,")
Scala> val counts = text
    .flatMap { _.toLowerCase.split("\\W+") }
    .map { (_, 1) }.groupBy(0).sum(1)
Scala> counts.print()

运行结果
Flink部署-standalone模式_第2张图片

web url也可以看到详细的信息
Flink部署-standalone模式_第3张图片

遇到异常情况:
我们这边是因为安装了Scala导致通信失败,将Scala的环境信息去掉就可以了。具体问题还不是很清楚,待后续查明白。

java.net.ConnectException: Connection refused (Connection refused)
        at java.net.PlainSocketImpl.socketConnect(Native Method)
        at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
        at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
        at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
        at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
        at java.net.Socket.connect(Socket.java:589)
        at org.apache.flink.streaming.api.functions.source.SocketTextStreamFunction.run(SocketTextStreamFunction.java:96)
        at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:94)
        at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:58)
        at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:99)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:300)
        at org.apache.flink.runtime.taskmanager.Task.run(Task.java:711)
        at java.lang.Thread.run(Thread.java:745)
2018-11-19 01:49:52,298 INFO  org.apache.flink.runtime.executiongraph.ExecutionGraph   
 - Job Socket Window WordCount (8b38f995aa8e61fd520b61e0888ecd46) switched from state RUNNING to FAILING.
java.net.ConnectException: Connection refused (Connection refused)
        at java.net.PlainSocketImpl.socketConnect(Native Method)
        at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
        at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
        at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
        at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
        at java.net.Socket.connect(Socket.java:589)
        at org.apache.flink.streaming.api.functions.source.SocketTextStreamFunction.run(SocketTextStreamFunction.java:96)
        at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:94)
        at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:58)
        at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:99)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:300)
        at org.apache.flink.runtime.taskmanager.Task.run(Task.java:711)
        at java.lang.Thread.run(Thread.java:745)

你可能感兴趣的:(flink,flink部署)