一个目前没找到原因的问题

np.linalg.solve(a, b) 解方程的问题。

错误消息:

 r = gufunc(a, b, signature=signature, extobj=extobj)
TypeError: No loop matching the specified signature and casting was found for ufunc solve1。

既然 Ax=b 无法解,那就求 x=A**-1 *b

tmpA = np.linalg.inv(A)
X = np.dot(tmpA , b)

这个问题太奇葩了,


import math
import numpy as np

nodeNumber = 4
KK = np.zeros((2*nodeNumber,2*nodeNumber))

"""
边界条件,U表示节点的位移向量,如果某个自由度的位移未知,则该处填写‘u_Unknown’,
F表示节点的荷载向量,如果某个自由度的荷载未知,则该处填写‘f_Unknown’
"""
U = np.array([0, 0, 'u_Unknown', 0, 'u_Unknown', 'u_Unknown', 0, 0], dtype=object)
F = np.array(['f_Unknown', 'f_Unknown', 2e4, 'f_Unknown', 0, -2.5e4, 'f_Unknown', 'f_Unknown'], dtype=object)


class Bar2D:
    """定义二维杆单元类,该类包含杆件的基本信息:
    E 弹性模量,A 杆单元面积,i 单元起点的节点编号,j 单元终点的节点编号
    x1 y1 起点的坐标,x2 y2 终点的坐标,
    DOF 单元在总体刚度矩阵里面所在的位置,L 单元的长度,
    cos sin 单元的方向余弦 方向正弦,
    k 单元刚度矩阵"""

    def __init__(self, E, A, x1, y1, x2, y2, i, j):
        self.E = E
        self.A = A
        self.i = i
        self.j = j
        # 定义一个由单刚矩阵的自由度向总刚矩阵自由度转换的数组
        self.DOF = np.array([2 * i - 2, 2 * i - 1, 2 * j - 2, 2 * j - 1], dtype=np.int16)
        self.L = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
        self.cos = (x2 - x1) / self.L
        self.sin = (y2 - y1) / self.L
        L, c, s = self.L, self.cos, self.sin
        self.k = (E * A / L) * np.array([[c * c, c * s, -c * c, -c * s],
                                         [c * s, s * s, -c * s, -s * s],
                                         [-c * c, -c * s, c * c, c * s],
                                         [-c * s, -s * s, c * s, s * s]])

    "定义求解单元应力的函数"

    def stress(self):
        # 从位移矩阵U中获取该单元两个节点的1*4位移矩阵
        u = U(self.DOF)
        E, L, c, s = self.E, self.L, self.c, self.s
        T = np.array([-c, -s, c, s])
        self.bar_Stress = E / L * np.dot(T, u)
        return self.bar_Stress


"定义总刚矩阵集成函数"


def Bar2D2Node_Assembly(KK, bar):
    for n1 in range(4):
        for n2 in range(4):
            KK[bar.DOF[n1], bar.DOF[n2]] += bar.k[n1, n2]
    return KK


'求解节点位移'

def node_Disaplacement(KK, U, F):
    # 获取缩减后的总刚矩阵
    del_row_col = np.where(U == 0)
    kk_delRow = np.delete(KK, del_row_col, 0)
    kk_delCol = np.delete(kk_delRow, del_row_col, 1)
    kk = kk_delCol
    # 获取节点位移位置对应的节点力矩阵
    f = F[np.where(U == 'u_Unknown')]
    invKK = np.linalg.inv(kk)
    u = np.dot(invKK, f)
    print("求出位置的节点位移")
    print (u)
    'u = np.linalg.solve(kk, f)'
    U[np.where(U == 'u_Unknown')] = u
    return U

'求解节点力,必须在已经求得节点位移U后才可调用本函数'


def node_Force(KK, U):
    F = np.dot(KK, U)
    return F

E, A, x1, y1, x2, y2, x3, y3, x4, y4 = 2.95e11, 0.0001, 0, 0, 0.4, 0, 0.4, 0.3, 0, 0.3
bar1 = Bar2D(E, A, x1, y1, x2, y2, 1, 2)
bar2 = Bar2D(E, A, x3, y3, x2, y2, 3, 2)
bar3 = Bar2D(E, A, x1, y1, x3, y3, 1, 3)
bar4 = Bar2D(E, A, x4, y4, x3, y3, 4, 3)

bars = [bar1, bar2, bar3, bar4]

for bar in bars:
    Bar2D2Node_Assembly(KK, bar)

U = node_Disaplacement(KK, U, F)
print("节点位移")
print(U)
F = node_Force(KK, U)
print("节点受力")
print(F)


你可能感兴趣的:(python)