斐波那契散列

      斐波那契散列法其实是一种特殊的乘法散列,先来看乘法散列.根据算法导论第2版中的定义,构造乘法散列函数包含两个步骤。第一步,用关键字k乘上常数A(0

      一般来说,m取值为2^p,而A的取值为形如s/2^w的分数(w为计算机的字长,int32,long long 64),那么简化之后h(k)=s*k的低w位中的高p位。

      为了得到更好的随即性, knuth认为A去黄金分割数是一个比较理想的值,因此A=0.6180339887....。这就是传说中的斐波那契散列了

      举一个例子,k=123456,m=2^14,w=32,那么,h(k)=(A*2^32*k mod 2^32)/2^14=67.为了计算的简便通常去A*2^w为斐波那契数。w=32  fib(w)=2654435769.............

     演示代码:

 

const unsigned fibonacci=2654435769;
unsigned getHashCode(unsigned n)
{
	unsigned a=(n*fibonacci)>>18;
	return a;	
}

 

值得注意的是代码中n*fibonacci是unsigned型,字长为32,因此计算之后自动取了底32位。

你可能感兴趣的:(数据结构算法)