- C语言解决左移问题
七七凉
c++c#
图2.1主方法首先用户先输入一串字符串,表现为:stringstr;cout>str;其次使用贪心算法来优化字符串,使得相邻字符的ASCII码之差的最小值最大因此调用到函数greedyOptimize(str);然后初始化maxMinDiff为INT_MIN(整型最小值),用于记录经过左移操作后能得到的相邻字符ASCII码之差的最大最小值,同时定义bestShiftedStr用于保存能达到这个最大
- 自然语言生成(NLG)算法模型评估方案的硬件配置、系统架构设计、软件技术栈、实现流程和关键代码
weixin_30777913
人工智能算法系统架构自然语言处理
智能化对话中的自然语言生成(NLG)算法模型评估是一个复杂而多维的过程,它涉及多个评估指标和策略,以确保生成的文本质量、准确性和流畅性。智能化对话中的NLG算法模型评估是一个涉及多个评估指标和策略的过程。通过选择合适的评估指标和策略,可以全面、客观地评估模型的性能和表现,为模型的优化和改进提供有力支持。以下是对NLG算法模型评估的详细论述及举例说明:一、评估指标准确性:•关注模型生成的语言内容是否
- 初步理解数据结构
神探阿航
计算机产业科普与思考数据结构算法java职场和发展
引言数据结构是计算机科学中的核心概念之一,它是存储、组织和管理数据的方式,直接影响算法的效率和程序的性能。无论是开发一个简单的应用程序,还是设计一个复杂的系统,选择合适的数据结构都是至关重要的。本文将深入探讨常见的数据结构及其应用场景,并通过具体的Java代码示例帮助读者更好地理解如何在实际问题中选择和使用数据结构。1.什么是数据结构?数据结构是指在计算机中存储和组织数据的方式,使得数据可以高效地
- MIT6.S081学习总结-lab10:mmap
NullObjectError
Linux操作系统linux6.S081
lab10实现mmap介绍mmap和munmap系统调用允许UNIX程序对它们的地址空间进行详细的控制。它们可以用于在进程之间共享内存,将文件映射到进程地址空间,以及作为用户级页面错误方案的一部分,比如在讲座中讨论的垃圾收集算法。在本实验中,您将向xv6添加mmap和munmap,重点关注内存映射文件。void*mmap(void*addr,size_tlength,intprot,intflag
- AUTOSAR从入门到精通-【新能源汽车】高压配电管理(PDU/BDU)
格图素书
人工智能自动驾驶
目录前言几个高频面试题目【BDU/PDU】注释区别功能侧重方面结构组成方面工作原理方面在电动汽车中的角色方面知识储备主控电池管理系统BMS算法原理什么是高压配电管理(PDU/BDU)BDU定义:PDU定义pdu的作用是什么BDU各部件及成本构成BDU的组成CAE技术在研发中的作用汽车级PMIC在BDU和PDU中的应用分析KA84917UA的典型产品特性高压控制盒(PDU)生产厂家未来发展趋势前言P
- 路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)
搏博
算法大数据人工智能算法策略模式python机器学习启发式算法
鸽群算法(Pigeon-inspiredOptimization,PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。更多的仿生群体算法概括可以看我的文章:仿生的群体智能算法总结之一(十种)_最新群体算法-CSDN博客仿生的群体智能算法总结之二
- 【LeetCode 刷题】回溯算法-棋盘问题
Bran_Liu
LeetCode算法leetcodepython
此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法棋盘问题相关的题目解析。文章目录51.N皇后37.解数独332.重新安排行程51.N皇后题目链接classSolution:defsolveNQueens(self,n:int)->List[List[str]]:board=[['.'for_inrange(n)]for_inrange(n)]res=[]defcheck(x:int,
- 基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析
kaka_R-Py
大数据可视化多元统计分析R语言数据分析与可视化算法聚类随机森林
基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析摘要近年来,随着数字化和信息化的快速发展,越来越多的人开始使用智能手机。文章基于某公司某年连续30天4万多位智能手机用户的监测数据,通过随机森林与RFM聚类分析模型对智能手机用户的监测数据进行挖掘和分析,有效地统计和归纳了用户对于A类APP的使用情况,模型准确度达到了80%,同时对于智能手机APP的开发和使用提出了相应的建议。该研究的数据驱
- 算法基础——一致性
黄雪超
大数据基础#算法基础大数据算法一致性
引入最早研究一致性的场景既不是大数据领域,也不是分布式系统,而是多路处理器。可以将多路处理器理解为单机计算机系统内部的分布式场景,它有多个执行单元,每一个执行单元都有自己的存储(缓存),一个执行单元修改了自己存储中的一个数据后,这个数据在其他执行单元里面的副本就面临数据一致的问题。随着时代发展,互联网公司的快速发展,单机系统在计算和存储方面都开始面临瓶颈,分布式是一个必然的选择,但是这也进一步放大
- OpenCV图像旋转90度的最简单方法
时光荏苒-
opencv计算机视觉人工智能OpenCV
OpenCV是一个功能强大的计算机视觉库,提供了许多图像处理和计算机视觉算法。在OpenCV中,图像旋转是一项常见的操作。本文将介绍如何使用OpenCV将图像旋转90度的最简单方法。步骤1:导入OpenCV库在Python中使用OpenCV库需要先导入库。可以使用以下代码导入OpenCV库:importcv2步骤2:读取图像使用OpenCV读取图像需要使用cv2.imread()函数。该函数接受一
- 动态图最短路径的实时优化:应对边权重频繁更新的工程实践
热爱分享的博士僧
人工智能
在处理动态图中的最短路径问题时,尤其是面对边权重频繁更新的情况,传统的静态图算法如Dijkstra算法或Bellman-Ford算法可能不再适用或效率低下。这是因为每次边权重更新都需要重新计算整个图的最短路径,导致计算成本非常高。为了应对这种情况,需要采用一些特定的技术和策略来优化实时性能。1.动态最短路径算法A.动态Dijkstra算法虽然标准的Dijkstra算法是为静态图设计的,但可以通过缓
- FPGA电机控制
SCSS-L
FPGA控制电机
随着现在电力电子技术、微电子技术和电机控制理论技术的发展,电机控制器的发展经过了一下几个阶段:1、模拟电路控制阶段:优点:模拟控制器响应速度快,调速范围宽等。缺点:需要的元器件多,设计复杂,调试困难,并且难以实现复杂的电机控制算法。2、单片机(MCU)控制阶段:优点:单片机价格便宜,易于控制,广泛应用于低端电机控制领域。缺点:单片机采用RISC流水总线结构、且资源有限,开发周期长,运算处理慢,实时
- 音视频多媒体编解码器基础-codec
硬件学长森哥
嵌入式软件影像嵌入式驱动音视频驱动开发嵌入式硬件
如果要从事编解码多媒体的工作,需要准备哪些更为基础的内容,这里帮你总结完。因为数据类型不同所以编解码算法不同,分为图像、视频和音频三大类;因为流程不同,可以分为编码和解码两部分;因为编码器实现不同,分为硬编码和软编码;因为编解码硬件位置不同,可以分为片内、片外和独立编解码模块三类;软件常用的框架ffmpeg。音视频编解码(Audio-VideoCoding)是指将音频和视频信号进行压缩编码以及解码
- 目标检测的超级英雄:YOLO带你识别世界
星际编程喵
Python探索之旅目标检测YOLO目标跟踪人工智能计算机视觉python
前言YOLO(YouOnlyLookOnce)是计算机视觉领域一颗璀璨的明星,它以高效、快速著称,成为目标检测算法的代表。今天,我们一起走进YOLO的世界,看看它如何神奇地识别图像中的物体。当然,不用担心,这篇文章会让你轻松理解,并且我会用幽默、通俗的语言给大家展示这项技术。相信我,看完之后,你会觉得YOLO不仅是个算法,更像是个看得懂、说得清的技术伙伴。简介YOLO不仅是一个简单的目标检测模型,
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- 一文讲解Spring中应用的设计模式
Journey_CR
Springspring设计模式java
我们都知道Spring框架中用了蛮多设计模式的:工厂模式呢,就是用来创建对象的,把对象的创建和使用分开,这样代码更灵活。代理模式呢,是用一个代理对象来控制对真实对象的访问,可以在访问前后做一些处理。单例模式呢,保证一个类只有一个实例,比如数据库连接池就经常用单例模式。模板模式呢,定义一个算法的框架,把具体的实现延迟到子类去做。观察者模式呢,定义了对象之间的一对多依赖关系,当一个对象状态改变时,依赖
- 面试常考题目——状态码总结
字节全栈_BjO
面试职场和发展
这是个面试和考研的算法练习我们一起加油上岸之路总述=====================================================================1开头这一类型的状态码,代表请求已被接受,需要继续处理。这类响应是临时响应,只包含状态行和某些可选的响应头信息,并以空行结束。由于HTTP/1.0协议中没有定义任何1xx状态码,所以除非在某些试验条件下,服务器禁
- 计算机科学与技术论文目录结构
程序猿私人订制_2573966427
毕业设计毕设毕业设计
摘要Abstract第一章绪论1.1研究背景和意义这部分大约700字1.2国内外研究现状这部分分3段,分别为:在国内,...(大约300-400字)在国外,...(大约3---400字)综上所述,...(大约200-300字)1.3系统创新点(可选)比如使用了前后端分离技术,使用了ChatGPT,使用了无session,使用了某某算法等。大概300-400字左右。1.4系统技术难点(可选)比如系统
- 考研党从头学JAVA DAY1--下篇
RINO喵
java算法leetcode
这篇主要是关于算法的,用的提交网站是力扣。题目:两数之和给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值target的那两个整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。你可以按任意顺序返回答案。示例1:输入:nums=[2,7,11,15],target=9输出:[0,1]解释:因为nums[0]+nums[1]=
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- 数据结构与算法之栈: LeetCode 3100. 换水问题 II (Ts版)
Wang's Blog
DataStructureandAlgorithmsleetcode算法
换水问题II给你两个整数numBottles和numExchange。numBottles代表你最初拥有的满水瓶数量。在一次操作中,你可以执行以下操作之一:喝掉任意数量的满水瓶,使它们变成空水瓶。用numExchange个空水瓶交换一个满水瓶。然后,将numExchange的值增加1。注意,你不能使用相同的numExchange值交换多批空水瓶。例如,如果numBottles==3并且numExc
- 代码随想录算法训练营Day51 | 101.孤岛的总面积、102.沉没孤岛、103.水流问题、104.建造最大岛屿
Harryline-lx
代码随想录算法深度优先
文章目录101.孤岛的总面积思路与重点102.沉没孤岛思路与重点103.水流问题思路与重点104.建造最大岛屿思路与重点101.孤岛的总面积题目链接:101.孤岛的总面积讲解链接:代码随想录状态:直接看题解了。思路与重点nextx或者nexty越界了则说明当前的x或y处于边界处,所以当前的岛不是孤岛,不能记入总面积。#include#includeusingnamespacestd;intdir[
- 《语音识别模式、算法设计与实践》——第一章 语音识别概述
静候光阴
语音识别语音识别人工智能python
专栏总目录1.1走进语音识别1.1.1语音识别的定义定义:语音识别是让机器具备自动接收和分析人类的语音,并最终输出对应文本的过程。目标:将输入语音转化为文字的输出目标实现条件:提前规定好该系统可以接收的语音输入形式,比如单个词、命令短语和连续语音。对应的文本输出形式,可以直接翻译出来的对应文本,也可以是经过编码的特殊字符,比如组成发音的基本单位——音素。由此可知,系统的输入和输出不同,决定了语音识
- 多维多重背包问题_各种背包五(二维费用背包问题)
zLiM5
多维多重背包问题
问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。算法费用加了一维,只需状态也加一维即可。设f[i][v][u]
- 【二维费用的完全背包问题】
羊毛多一点
算法学习动态规划
前言简单写一下算法设计与分析这门课的一次实验原题要求是用0-1背包来做,但是老师要求用完全背包来做!一、完全背包与0-1背包有什么区别?0-1背包,顾名思义对于每件物品只能拿1次或者0次;而完全背包对于每件物品的拿取没有次数限制。二、二维费用背包二维费用背包是对于每件物品的拿取要付出两项代价,如:重量和体积。三、0-1背包理解0-1背包对我们理解其他背包问题十分重要,首先说一下0-1背包。问题描述
- 【数据结构与算法】力扣 5. 最长回文子串
秀秀_heo
数据结构与算法leetcode算法职场和发展
题目描述5.最长回文子串给你一个字符串s,找到s中最长的回文子串。示例1:输入:s="babad"输出:"bab"解释:"aba"同样是符合题意的答案。示例2:输入:s="cbbd"输出:"bb"提示:1=0&&rightmaxLen){start=oddStart;maxLen=oddLen;}//处理偶数长度回文let[evenStart,evenLen]=expandAroundCenter
- 探索Web3世界:算法与挖矿详解
Java先进事迹
web3算法
哈希算法:区块链的“数字指纹”区块链的结构类似于链表,数据块一个连着一个,链接在一条或多条链上。每个数据块都至少记录着数据、自己的地址和前一个数据块的地址。每个数据块的“地址”的编码都是独一无二的,通过一种称为哈希算法的技术生成。哈希算法能够将任意长度的数据映射为一个固定长度的唯一编码(哈希值)。即使输入数据发生微小变化,生成的哈希值也会截然不同。我们可以将哈希算法比作一台神奇的调色机。无论你放入
- 组合导航中Kalman滤波算法相关知识简述
十八与她
捷联惯导算法与组合导航原理算法机器学习人工智能组合导航惯导
组合导航中Kalman滤波算法相关知识简述温馨提示:阅读本篇博文内容,需要读者具备一定的Kalman滤波基础知识上图即为Kalman滤波算法的框架,分为预测(时间更新)和更新(量测更新)两部分,其参数估计的过程就是两者循环迭代的过程。预报,就是根据系统状态方程,从前一时刻状态预测当前时刻的状态的过程,可理解成对系统的先验知识的一种推算。预报中,状态估计和它的方差协方差阵也要给出,从方差协方差阵P的
- 基于DQ轴谐波提取器的PMSM谐波抑制算法仿真研究:主动注入谐波电压与SVPWM调制策略的效果分析
BIdOeVNkOZSO
算法单片机嵌入式硬件
PMSM谐波抑制算法基于DQ轴谐波提取器的永磁同步电机仿真1.通过谐波提取器,直接提取DQ轴的谐波分量进行抑制,对五七次谐波电流抑制效果效果很好。2.为了放大效果,采用主动注入谐波电压的方法,增大了电机中的谐波分量。3.调制算法采用SVPWM,电流环处搭建了解耦补偿模块,控制效果更好。YID:799786174661444甜水井朴素的梭子蟹永磁同步电机仿真:PMSM谐波抑制算法的探索与实现在电力电
- GEE python——gee_pyccd基于连续监测变化检测(Continuous Change Detection and Classification, CCDC)
此星光明
GEE-PYTHONpython开发语言geeccdc变化检测py连续性
目录简介gee_pyccdPyCCDCCDC算法代码1代码2结果简介gee_pyccd协调在GoogleEarthEngine数据上使用PyCCD的脚本。此存储库与Google或USGS没有正式关联。gee_pyccd是一个基于GoogleEarthEngine平台的Python库,用于对遥感时间序列数据进行变化检测和趋势分析。它实现了基于连续监测变化检测(ContinuousChangeDete
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不