ElasticSearch学习与总结

ElasticSearch学习与总结

  • ElasticSearch
    • 1. 介绍
    • 2. 入门操作
      • 2.1 下载
      • 2.2 安装可视化界面head
      • 2.3 安装kibana
    • 3. ES核心概念
    • 4. IK分词器插件
      • 4.1 下载安装
      • 4.2 使用Kibana测试:
      • 4.3 用户配置字典
    • 5. Rest风格
      • 5.1 简介
      • 5.2 测试
      • 5.3 数据类型
      • 5.4 关于索引的基本操作
      • 5.5 关于文档的基本操作(重点)
        • 5.5.1 基本操作
        • 5.5.2 复杂查询
    • 6. 集成Springboot
      • 6.1 集成Springboot
      • 6.2 索引API操作
      • 6.3 文档API操作
      • 6.4 批量操作Bulk
      • 6.5 搜索

ElasticSearch

1. 介绍

  • 本笔记参考狂神说,版本为7.6.X

    • https://www.bilibili.com/video/BV17a4y1x7zq?p=2
  • Lucene是一套信息检索工具包(jar包),不含搜索引擎系统

  • ElasticSearch是基于Lucene做了一些封装和增强

2. 入门操作

  • JDK1.8以上,客户端,界面工具
  • 版本对应。

2.1 下载

官网下载

windows下解压就可以使用

目录:

bin:启动文件
config:配置文件
	log4j2 日志文件
	jvm.options 虚拟机文件
	elasticsearch.yml 配置文件  比如默认9200端口
lib:相关jar包

modules:功能模块
plugins:插件:比如ik插件

启动,然后localhost:9200访问

2.2 安装可视化界面head

  • es head插件,github上面下载

    • https://github.com/mobz/elasticsearch-head
  • npm install
    npm run start #启动插件:localhost:9100
    
  • 解决跨域问题:修改elasticsearch.yml文件

    • #解决跨域问题
      http.cors.enabled: true
      http.cors.allow-origin: "*"
      

2.3 安装kibana

  • ELK:日志分析架构栈
  • 注意:下载版本与es一致;可以在配置文件中汉化
  • 默认端口 localhost:5601

3. ES核心概念

  • es是面向文档的,一切都是JSON

  • 对比

    • 关系型数据库 Elasticsearch
      数据库database 索引 indices(数据库)
      表tables types (以后会被启用)
      行rows documents (文档)
      字段columns fields
  • 物理设计

    • 在后台把每个索引划分为多个分片,每片可以再集群中的不同服务器间迁移;
  • 逻辑设计

    • 文档:索引和搜索数据的最小单位是文档;
      • 自我包含:key:value
      • 层次型:一个文档中包含文档(json对象)
    • 类型:文档的逻辑容器
    • 索引:数据库
  • 倒排索引

    • es使用倒排索引的结构,采用Lucene倒排索引作为底层。用于快速全文检索。

4. IK分词器插件

  • 什么是IK分词器:
    • 把一句话分词
    • 如果使用中文:推荐IK分词器
    • 两个分词算法:ik_smart(最少切分),ik_max_word(最细粒度划分)

4.1 下载安装

下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases

然后解压,放到elasticsearch的plugins中,建立“ik”文件夹,然后放入;

重启观察es:发现加载ik插件了

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ewUmG3or-1590485221083)(http://njpsz.xyz/images/ik.png)]

4.2 使用Kibana测试:

【ik_smart】测试:

输入:

GET _analyze
{
  "analyzer": "ik_smart",
  "text": "我是社会主义接班人"
}

输出:

{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "社会主义",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "接班人",
      "start_offset" : 6,
      "end_offset" : 9,
      "type" : "CN_WORD",
      "position" : 3
    }
  ]
}

【ik_max_word】测试:

输入:

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "我是社会主义接班人"
}

输入:

{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "社会主义",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "社会",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "主义",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "接班人",
      "start_offset" : 6,
      "end_offset" : 9,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "接班",
      "start_offset" : 6,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "人",
      "start_offset" : 8,
      "end_offset" : 9,
      "type" : "CN_CHAR",
      "position" : 7
    }
  ]
}

4.3 用户配置字典

当一些特殊词(比如姓名)不能被识别切分时候,用户可以自定义字典:

ElasticSearch学习与总结_第1张图片

重启es和kibana测试

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dNxpUIif-1590485221097)(http://njpsz.xyz/images/20200417150218.png)]

5. Rest风格

5.1 简介

RESTful是一种架构的规范与约束、原则,符合这种规范的架构就是RESTful架构。

操作

method url地址 描述
PUT localhost:9100/索引名称/类型名称/文档id 创建文档(指定id)
POST localhost:9100/索引名称/类型名称 创建文档(随机id)
POST localhost:9100/索引名称/文档类型/文档id/_update 修改文档
DELETE localhost:9100/索引名称/文档类型/文档id 删除文档
GET localhost:9100/索引名称/文档类型/文档id 查询文档通过文档id
POST localhost:9100/索引名称/文档类型/_search 查询所有文档

5.2 测试

  • 1、创建一个索引PUT /索引名/类型名/id
  • 默认是_doc
  • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DeUg5fjf-1590485221110)(http://njpsz.xyz/images/20200417153651.png)]

ElasticSearch学习与总结_第2张图片

5.3 数据类型

  1. 基本数据类型
  • 字符串 text, keyword
  • 数据类型 long, integer,short,byte,double,float,half_float,scaled_float
  • 日期 date
  • 布尔 boolean
  • 二进制 binary
  1. 制定数据类型

输入:创建规则

PUT /test2
{
  "mappings": {
    
    "properties": {
      "name": {
        "type": "text"
      },
      "age": {
        "type": "long"
      },
      "birthday": {
        "type": "date"
      }
    }
  }  
}

输出:

{
  "acknowledged" : true,
  "shards_acknowledged" : true,
  "index" : "test2"
}

如果不指定具体类型,es会默认配置类型

5.4 关于索引的基本操作

  • 查看索引信息:

    GET test2

  • 查看es信息

    get _cat/

  • 修改

    1. 之前的办法:直接put

    2. 现在的办法:

    POST /test3/_doc/1/_update
    {
    “doc”: {
    “name”: “庞世宗”
    }
    }

  • 删除索引

    DELETE test1

5.5 关于文档的基本操作(重点)

5.5.1 基本操作

1、添加数据

PUT /psz/user/1
{
  "name": "psz",
  "age": 22,
  "desc": "偶像派程序员",
  "tags": ["暖","帅"]
}

2、获取数据

GEt psz/user/1
===============输出===========
{
  "_index" : "psz",
  "_type" : "user",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "psz",
    "age" : 22,
    "desc" : "偶像派程序员",
    "tags" : [
      "暖",
      "帅"
    ]
  }
}

3、 更新数据PUT

ElasticSearch学习与总结_第3张图片

4、更新数据,推荐POST _update

  • 不推荐
POST psz/user/1
{
  "doc":{
    "name": "庞庞胖"    #后面信息会没有
  }
}
  • 推荐!
POST psz/user/1/_update
{
  "doc":{
    "name": "庞庞胖"    #后面信息存在
  }
}

5、简单搜索 GET

GET psz/user/1

简答的条件查询:根据默认映射规则产生基本的查询

GET psz/user/_search?q=name:庞世宗

5.5.2 复杂查询

1、查询,参数使用JSON体

GET psz/user/_search
{
  "query": {
    "match": {
      "name": "庞世宗"   //根据name匹配
    }  
  },
    "_source": ["name","age"],  //结果的过滤,只显示name和age
    "sort": [
    {
      "age": {
        "order": "desc" //根据年龄降序
    }
    }
  ],
    
  "from": 0, //分页:起始值,从0还是
  "size": 1  //返回多少条数据
}
  • 之后只用java操作es时候,所有的对象和方法就是这里面的key
  • 分页前端 /search/{current}/{pagesize}

2 、布尔值查询

  • must(对应mysql中的and) ,所有条件都要符合
GET psz/user/_search
{
  "query": {
    "bool": {
      "must": [  //相当于and
        {
          "match": {
            "name": "庞世宗"
          }
          
        },
        {
          "match": {
            "age": 22
          }
        }
          
      ]
    }
  }
}
  • shoule(对应mysql中的or)
GET psz/user/_search
{
  "query": {
    "bool": {
      "should": [ //should相当于or
        {
          "match": {
            "name": "庞世宗"
          }
          
        },
        {
          "match": {
            "age": 22
          }
        }
          
      ]
    }
  }
}

  • must_not (对应mysql中的not)

  • 过滤器

GET psz/user/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "name": "庞世宗"
          }
          
        }
      ],
      "filter": [
        {
          "range": {
            "age": {
              "gt": 20   //过滤年龄大于20的
            }
          }
        }
      ]
    }
  }
}

3、精确查询

  • trem查询是直接通过倒排索引指定的词条进行精确的查找的。

关于分词:

​ trem,直接查询精确地

​ match,会使用分词器解析

关于类型:

text: 分词器会解析

keywords: 不会被拆分

4、高亮查询

GET psz/user/_search
{
  "query": {
    "match": {
      "name": "庞世宗"
    }
  },
  "_source": ["name","age"],
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ],
  "highlight": //高亮
  {
    "pre_tags": "

", //自定义高亮 "post_tags": "

"
, "fields": { "name":{} //自定义高亮区域 } } }

6. 集成Springboot

6.1 集成Springboot

官方文档:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/index.html

1、找到原生的依赖

<dependency>
    <groupId>org.elasticsearch.clientgroupId>
    <artifactId>elasticsearch-rest-high-level-clientartifactId>
    <version>7.6.2version>
dependency>

    <properties>
        <java.version>1.8java.version>
        <elasticsearch.version>7.6.1elasticsearch.version>
    properties>

2、找对象

Initialization

A RestHighLevelClient instance needs a REST low-level client builder to be built as follows:

RestHighLevelClient client = new RestHighLevelClient(
        RestClient.builder(
                new HttpHost("localhost", 9200, "http"),
                new HttpHost("localhost", 9201, "http")));

The high-level client will internally create the low-level client used to perform requests based on the provided builder. That low-level client maintains a pool of connections and starts some threads so you should close the high-level client when you are well and truly done with it and it will in turn close the internal low-level client to free those resources. This can be done through the close:

client.close();

In the rest of this documentation about the Java High Level Client, the RestHighLevelClient instance will be referenced as client.

3、分析类中的方法

一定要版本一致!默认es是6.8.1,要改成与本地一致的。

	<properties>
		<java.version>1.8java.version>
		<elasticsearch.version>7.6.1elasticsearch.version>
	properties>

Java配置类

@Configuration  //xml
public class EsConfig {

    @Bean
    public RestHighLevelClient restHighLevelClient(){
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(
                        new HttpHost("localhost", 9200, "http"))); //妈的被这个端口搞了
        return client;
    }
}

6.2 索引API操作

1、创建索引

@SpringBootTest
class EsApplicationTests {
	
	@Autowired
	@Qualifier("restHighLevelClient")
	private RestHighLevelClient restHighLevelClient;

	//创建索引的创建 Request
	@Test
	void testCreateIndex() throws IOException {
		//1.创建索引请求
		CreateIndexRequest request = new CreateIndexRequest("索引名");
		//2.执行创建请求 indices 请求后获得响应
		CreateIndexResponse createIndexResponse = restHighLevelClient.indices().create(request, RequestOptions.DEFAULT);

		System.out.println(createIndexResponse);
	}

}

2、获取索引

	@Test
	void testExistIndex() throws IOException {
		GetIndexRequest request = new GetIndexRequest("索引名");
		boolean exist =restHighLevelClient.indices().exists(request,RequestOptions.DEFAULT);
		System.out.println(exist);

	}

3、删除索引

	@Test
	void deleteIndex() throws IOException{
		DeleteIndexRequest requset = new DeleteIndexRequest("索引名");
		AcknowledgedResponse delete = restHighLevelClient.indices().delete(requset, RequestOptions.DEFAULT);
		System.out.println(delete.isAcknowledged());
	}

6.3 文档API操作

1、测试添加文档

	//测试添加文档
	@Test
	void testAddDocument() throws IOException {
		//创建对象
		User user = new User("psz", 22);
		IndexRequest request = new IndexRequest("ppp");
		//规则 PUT /ppp/_doc/1
		request.id("1");
		request.timeout(timeValueSeconds(1));
		//数据放入请求
		IndexRequest source = request.source(JSON.toJSONString(user), XContentType.JSON);

		//客户端发送请求,获取响应结果
		IndexResponse indexResponse = restHighLevelClient.index(request, RequestOptions.DEFAULT);
		System.out.println(indexResponse.toString());
		System.out.println(indexResponse.status());
	}

2、获取文档

	//获取文档,判断是否存在 GET /index/doc/1
	@Test
	void testIsExists() throws IOException {

		GetRequest getRequest = new GetRequest("ppp", "1");
		//过滤,不放回_source上下文
		getRequest.fetchSourceContext(new FetchSourceContext(false));
		getRequest.storedFields("_none_");
		boolean exists = restHighLevelClient.exists(getRequest, RequestOptions.DEFAULT);
		System.out.println(exists);
	}

3、获取文档信息

	//获取文档信息
	@Test
	void getDocument() throws IOException {
		GetRequest getRequest = new GetRequest("ppp", "1");
		GetResponse getResponse = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);
		System.out.println(getResponse.getSourceAsString());
		System.out.println(getResponse);
	}
==============输出==========================
{"age":22,"name":"psz"}
{"_index":"ppp","_type":"_doc","_id":"1","_version":2,"_seq_no":1,"_primary_term":1,"found":true,"_source":{"age":22,"name":"psz"}}

4、更新文档信息

	//更新文档信息
	@Test
	void updateDocument() throws IOException {

		UpdateRequest updateRequest = new UpdateRequest("ppp","1");
		updateRequest.timeout("1s");

		//json格式传入对象
		User user=new User("新名字",21);
		updateRequest.doc(JSON.toJSONString(user),XContentType.JSON);
		//请求,得到响应
		UpdateResponse updateResponse = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);
		System.out.println(updateResponse);
	}

5、删除文档信息

//删除文档信息
@Test
void deleteDocument() throws IOException {

   DeleteRequest deleteRequest = new DeleteRequest("ppp","1");
   deleteRequest.timeout("1s");
   DeleteResponse deleteResponse = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);
   System.out.println(deleteResponse);
}

6.4 批量操作Bulk

  • 真实项目中,肯定用到大批量查询
	@Test
	void testBulkRequest() throws IOException{
		BulkRequest bulkRequest = new BulkRequest();
		bulkRequest.timeout("10s");//数据量大的时候,秒数可以增加

		ArrayList<User> userList = new ArrayList<>();
		userList.add(new User("psz",11));
		userList.add(new User("psz2",12));
		userList.add(new User("psz3",13));
		userList.add(new User("psz4",14));
		userList.add(new User("psz5",15));

		for (int i = 0; i < userList.size(); i++) {
			bulkRequest.add(
					new IndexRequest("ppp")
					.id(""+(i+1))
					.source(JSON.toJSONString(userList.get(i)),XContentType.JSON));
		}
		//请求+获得响应
		BulkResponse bulkResponse = restHighLevelClient.bulk(bulkRequest, RequestOptions.DEFAULT);
		System.out.println(bulkResponse.hasFailures());//返回false:成功
	}

6.5 搜索

	/*
		查询:
		搜索请求:SearchRequest
		条件构造:SearchSourceBuilder
	 */
	@Test
	void testSearch() throws IOException {
		SearchRequest searchRequest = new SearchRequest("ppp");
		//构建搜索条件
		SearchSourceBuilder searchSourceBuilderBuilder = new SearchSourceBuilder();
		// 查询条件QueryBuilders工具
		// :比如:精确查询
		TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("name", "psz");
		searchSourceBuilderBuilder.query(termQueryBuilder);
		//设置查询时间
		searchSourceBuilderBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
		//设置高亮
		//searchSourceBuilderBuilder.highlighter()

		searchRequest.source(searchSourceBuilderBuilder);
		SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
		System.out.println(JSON.toJSONString(searchResponse.getHits()));
	}

你可能感兴趣的:(java)