题意:
给你一个长度为 m m m 的全是由数字构成的序列 s s s,让你找出有多少种长度为 n n n 的序列里面没有字串 s s s。
( m o d (mod (mod k ) k) k)
分析:
先丢出一个相似的题目链接
d p [ i ] [ j ] dp[i][j] dp[i][j] 表示构造了 i i i 个字符,后缀和 s s s 匹配了 j j j 位。
那么转移就是
d p [ i ] [ j ] dp[i][j] dp[i][j] = = = ∑ l = 0 m − 1 d p [ i − 1 ] [ l ] × v [ l ] [ j ] \sum_{l=0}^{m-1} dp[i-1][l] \times v[l][j] ∑l=0m−1dp[i−1][l]×v[l][j]
v [ l ] [ j ] v[l][j] v[l][j] 表示与 s s s 匹配了 l l l 位后,在后面填 0 → 9 0 \to 9 0→9 后变成与 s s s 匹配 j j j 位有的情况有多少种。
然后 n n n 很大,直接递推不行,发现转移是一个矩阵乘法,那么就直接上矩阵快速幂加速递推。
我们可以做个 k m p kmp kmp 的求 n e x t next next 数组来加速把 v [ i ] [ j ] v[i][j] v[i][j] 预处理出来。
最后答案就是 ∑ i = 0 m − 1 a n s [ 0 ] [ i ] \sum_{i=0}^{m-1} ans[0][i] ∑i=0m−1ans[0][i]
记得取模。
代码:
#include
#include
using namespace __gnu_cxx;
using namespace std;
#define mst(a,b) memset(a,b,sizeof(a))
#define ALL(x) x.begin(),x.end()
#define pii pair
#define debug(a) cout << #a": " << a << endl;
#define eularMod(a, b) a < b ? a : a % b + b
inline int lowbit(int x){ return x & -x; }
typedef long long LL;
typedef unsigned long long ULL;
const int N = 1e5 + 10;
const long long mod = 1000000007;
const int INF = 0x3f3f3f3f;
const long long LINF = 0x3f3f3f3f3f3f3f3fLL;
const double PI = acos(-1.0);
const double eps = 1e-6;
int n, m, MOD;
char s[25];
int nex[25];
struct Matrix {
int mat[25][25];
};
Matrix mat_mul (Matrix a, Matrix b, int n) {
Matrix c;
mst(c.mat, 0);
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) if (a.mat[i][k]) {
for (int j = 0; j < n; j++) if (b.mat[k][j]) {
c.mat[i][j] += 1LL * a.mat[i][k] * b.mat[k][j] % MOD;
if (c.mat[i][j] >= MOD)
c.mat[i][j] -= MOD;
}
}
}
return c;
}
Matrix mat_q_pow (Matrix a, int n, int b) {
Matrix c;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
c.mat[i][j] = (i == j);
}
for (; b; b >>= 1) {
if (b & 1)
c = mat_mul(c, a, n);
a = mat_mul(a, a, n);
}
return c;
}
int main() {
#ifdef purple_bro
freopen("in.txt", "r", stdin);
// freopen("out.txt","w",stdout);
#endif
scanf("%d%d%d%s", &n, &m, &MOD, s);
int j = -1;
nex[0] = -1;
for (int i = 0; i < m; i++) {
for (;j != -1 && s[i] != s[j];)
j = nex[j];
nex[i + 1] = ++j;
}
Matrix v;
mst(v.mat, 0);
for (int i = 0; i < m; i++) {
for (int j = 0; j <= 9; j++) {
int to = i;
for (;to != -1 && j != s[to] - '0';)
to = nex[to];
v.mat[i][++to]++;
}
}
Matrix ans = mat_q_pow(v, m, n);
int res = 0;
for (int i = 0; i < m; i++) {
res += ans.mat[0][i];
if (res >= MOD)
res -= MOD;
}
printf("%d\n", res);
return 0;
}