- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- **解读心理健康,引领未来智能——MentaLLaMA:大型语言模型的革命性应用**
滑辰煦Marc
解读心理健康,引领未来智能——MentaLLaMA:大型语言模型的革命性应用在如今的数字时代,社交媒体成为人们分享生活、表达情绪的重要平台。然而,从中洞察公众的心理健康状况并提供及时帮助却是一大挑战。为此,由国际知名科研机构如英国曼彻斯特大学的国家文本挖掘中心(NaCTeM)和人工智能研究中心(AIST)等合作研发的开源项目——MentaLLaMA应运而生。这个项目不仅提供了一种创新的方法来分析社
- 情感分析相关汇总
宁缺100
自然语言处理自然语言处理情感分析
文章目录情感分析语音情感识别句子or文档级别情感分析情感词汇字典大连理工大学中文情感词汇本体中文金融情感词典金融社交媒体数据应用的市场情绪词典中文情感分析常用词典台湾大学NTUSD简体中文情感词典BosonNLPABSA细腻度情感分析相关比赛【千言情感分析】SKEP句子级情感分析相关博客或者论文中文情感分析(SentimentAnalysis)的难点在哪?现在做得比较好的有哪几家?文本挖掘在商品评
- 计算机毕业设计之基于Python的旅游景点评论内容分析与研究
微信bishe58
课程设计springbootpython信息可视化
旅游景点评论内容分析与研究是一个涉及文本挖掘、情感分析和数据可视化等多领域技术的复杂过程。本研究以Python编程语言为基础,首先收集了来自不同旅游平台的用户评论数据。通过运用自然语言处理(NLP)技术,清洗并预处理了这些数据,以便于后续分析。随后,采用情感分析方法来识别和量化评论中的主观态度和情绪倾向,从而判断游客的整体满意度。此外,还运用词云、主题建模等手段来探索游客评论中的关键词汇和讨论主题
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- Python中的自然语言处理和文本挖掘
api77
电商apiapipython自然语言处理easyui开发语言网络前端java
在Python中,自然语言处理(NLP)和文本挖掘通常涉及对文本数据进行清洗、转换、分析和提取有用信息的过程。Python有许多库和工具可以帮助我们完成这些任务,其中最常用的包括nltk(自然语言处理工具包)、spaCy、gensim、textblob和scikit-learn等。以下是一个简单的例子,展示了如何使用Python和nltk库进行基本的自然语言处理和文本挖掘。安装必要的库首先,确保你
- 【医学大模型 知识增强】SMedBERT:结构化语义知识 + 医学大模型 = 显著提升大模型医学文本挖掘性能
Debroon
医学大模型:个性化精准安全可控人工智能
SMedBERT:结构化语义知识+医学大模型=显著提升医学文本挖掘任务性能名词解释结构化语义知识预训练语言模型医学文本挖掘任务提出背景具体步骤提及-邻居混合注意力机制实体嵌入增强实体描述增强三元组句子增强提及-邻居上下文建模域内词汇权重学习领域自监督任务预训练SMedBERT图示左半部分:SMedBERT架构右半部分:预训练任务方法部分数学部分效果论文:https://arxiv.org/pdf/
- 人工智能
阳光照我心房
今天看了下人工智能的资料,了解了下,人工智能的应用方向,实现技术。了解到人工智能、机器学习、深度学习的关系,神经网络是深度学习的实现的模型。语音、图像、机器翻译、机器人、文本挖掘和分类。感觉机器学习自己挺感兴趣啊
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- 机器学习概述及流程
机智的冷露
机器学习人工智能机器学习python
概述一、目标1、掌握机器学习基础环境安装2、掌握常用的科学计算库对数据进行展示、分析二、人工智能三要素1、数据2、算法2、算力:CPU适合I/O密集型程序,GPU适合计算密集型和易于并行的程序。三、人工智能主要分支1、计算机视觉(CV)2、自然语言处理(NLP):文本挖掘/分类、机器翻译、语音识别3、机器人四、机器学习工作流程简介从数据中自动分析获得模型,再利用模型对未知数据进行预测。1、获取数据
- 文本挖掘HW3
在做算法的巨巨
importosimportos.pathimportcodecsimportpandasaspdimportnumpyasnpfilePaths=[]fileContents=[]a=os.walk("C:/Users/dell/Desktop/datamining/2.1+语料库/2.1/SogouC.mini/Sample")forroot,dirs,filesina:fornameinfi
- 数据科学 | Python酷炫词云图原来可以这么玩
欣一2002
可视化python数据分析数据可视化csv
↑↑↑↑↑点击上方蓝色字关注我们!『运筹OR帷幄』转载作者:费弗里编者按词云图是文本挖掘中用来表征词频的数据可视化图像,通过它可以很直观地展现文本数据中的高频词。词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。很多文章都会用词云图来直观的表示数据分析结果,词云图是如果制作的就在这篇文章中寻找答案吧。本文对应脚本及数据在后台领取,回复【词云图】1简介词云图是文本挖
- 新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题
八块腹肌的小胖
数据分析python
大家好,我是八块腹肌的小胖,下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作目录1、数据获取2、数据处理3、词频统计及词云展示4、文本聚类分析5、文本情感倾向性分析6、情感倾向演化分析7、总结1、数据获取本任务以新浪微博为目标网站,爬取“中国文化”为主题的微博数据进行数据预处理、数据可视化等操作。目标网站如图1所示:图1微博网站及分析通过分析微博网站,使用爬虫获取代码,爬虫核心伪
- 基于TF-IDF的关键词提取的实现
Algorithm_Engineer_
自然语言处理tf-idfpython人工智能
一.TF-IDF的简单介绍TF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索与文本挖掘的常用加权技术,用于评估一个词在文档集合中的重要性。它结合了词频和逆文档频率的概念。以下是TF-IDF的简单介绍:词频(TF-TermFrequency):表示一个词在文档中出现的频率。通常,词频越高,说明该词在文档中越重要。公式:TF(t,d)=词t在
- 看书标记【R语言数据分析项目精解:理论、方法、实战 9】
小胡涂记
R语言资料实现r语言数据分析开发语言
看书标记——R语言Chapter9文本挖掘——点评数据展示策略9.1项目背景、目标和方案9.1.1项目背景9.1.2项目目标9.1.3项目方案1.建立评论文本质量量化指标2.建立用户相似度模型3.对用户评论进行情感性分析9.2项目技术理论简介9.2.1评论文本质量量化指标模型1.主题覆盖量2.评论文本分词数量3.评论点赞数4.评论中的照片数5.评论分值偏移9.2.2用户相似度模型1.pearson
- NLP深入学习(三):TF-IDF 详解以及文本分类/聚类用法
Smaller、FL
NLP自然语言处理学习tf-idfnlp人工智能
文章目录0.引言1.什么是TF-IDF2.TF-IDF作用3.Python使用3.1计算tf-idf的值3.2文本分类3.3文本聚类4.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》《NLP深入学习(二):nltk工具包介绍》1.什么是TF-IDFTF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索和文本挖掘的常用加权
- [文本挖掘和知识发现] 01.红楼梦主题演化分析——文献可视化分析软件CiteSpace入门
Eastmount
文本挖掘和知识发现Python学习系列CiteSpace数据分析文本挖掘主题演化图书情报
八月太忙,还是写一篇吧!本文是作者2023年8月底新开的专栏——《文本挖掘和知识发现》,主要结合Python、大数据分析和人工智能分享文本挖掘、知识图谱、知识发现、图书情报等内容。此外,这些内容也是作者《文本挖掘和知识发现(Python版)》书籍的部分介绍,本书预计2024年上市,采用通俗易懂和图文并茂的形式藐视,会更加系统地介绍文本挖掘和知识发现,共计20章节内容,涵盖上百个案例。您的关注、点赞
- BM25(Best Matching 25)算法基本思想
NLP工程化
Python教程python信息检索BM25
BM25(BestMatching25)是一种用于信息检索(InformationRetrieval)和文本挖掘的算法,它被广泛应用于搜索引擎和相关领域。BM25基于TF-IDF(TermFrequency-InverseDocumentFrequency)的思想,但对其进行了改进以考虑文档的长度等因素。一.基本思想 以下是BM25算法的基本思想:TF-IDF的改进:BM25通过对文档中的每
- 文本挖掘与信息抽取:从非结构化数据中提取知识的关键技术
人工智能的光信号
人工智能
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦!进群扫码领资料文本挖掘和信息抽取是自然语言处理领域中的重要技术,它们可以帮助我们从大量的文本数据中提取出有用的信息和知识。本文将对文本挖掘和
- Python文本挖掘学习笔记- sentiment analysis情感分析
认真学习的兔子
量化用户的内容、想法、信念和意见被称为情感分析。用户的在线帖子、博客、推特、产品的反馈有助于商业人士了解目标受众,并在产品和服务方面进行创新。情绪分析有助于以更好、更准确的方式了解人们。它不仅限于市场营销,而且还可以用于政治、研究和安全领域。人类的交流不仅仅局限于语言,它比语言更重要。情感是文字、语气和写作风格的组合。作为一个数据分析师,更重要的是要了解我们的情感,它到底意味着什么?让我们继续学习
- 解密TF-IDF:打开文本分析的黑匣子
散一世繁华,颠半世琉璃
人工智能python人工智能
1.TF-IDF概述TF-IDF,全称是“TermFrequency-InverseDocumentFrequency”,中文意为“词频-逆文档频率”。这是一种在信息检索和文本挖掘中常用的加权技术。TF-IDF用于评估一个词语对于一个在语料库中的文件集或一个语料库中的其中一份文件的重要程度。它是一种统计方法,用以评估词语对于一个文件集或一个查询库中的其中之一的重要性。其基本思想是:如果某个词语在一
- 【论文笔记】ZOO: Zeroth Order Optimization
xhyu61
学习笔记论文笔记机器学习论文阅读
论文(标题写不下了):《ZOO:ZerothOrderOptimizationBasedBlack-boxAttackstoDeepNeuralNetworkswithoutTrainingSubstituteModels》Abstract深度神经网络(DNN)是当今时代最突出的技术之一,在许多机器学习任务中实现了最先进的性能,包括但不限于图像分类、文本挖掘、语音处理。但人们越来越关注对抗性示例的
- 基于关联规则与可平面图的商品摆放规划-----实验报告
FakeOccupational
数据分析
基于关联规则与可平面图的商品摆放规划摘要:本文先对northwind数据库介绍与数据描述与简单分析(数据异常值处理,订单地址的文本挖掘),然后对购买的商品使用关联规则算法,进行关联分析与商品的购买情况分析,由关联规则的发现结果,使用图论方法分析商品的摆放图。关键词:Northwind数据库;关联规则;可平面图;1.Northwind数据库数据介绍图1Northwind数据库的安装文件执行文件中的S
- 深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用
汀、人工智能
tf-idf人工智能BM25算法NLP自然语言处理检索系统语义搜索
深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用1.文本特征表示方法:TF-IDF在信息检索,文本挖掘和自然语言处理领域,IF-IDF这个名字,从它在20世纪70年代初被发明,已名震江湖近半个世纪而不曾衰歇.它表示的简单性,应用的有效性,使得它成为不同文本处理任务文本特征权重表示的首选方案.如果要评选一个NLP领域最难以被忘记的公式,我想,TF-IDF应该是无可争议的
- 文本挖掘之主题分析的详细介绍
亦旧sea
机器学习人工智能算法
文本挖掘的主题分析是什么文本挖掘的主题分析是指通过计算机自动处理文本数据,识别出文本中的主题和话题。主题指的是文本中的核心概念或议题,而话题则是具体的讨论点或事件。主题分析可以帮助人们快速了解大量文本数据中的内容和趋势,从而支持信息检索、舆情分析、情感分析、知识发现等应用。主题分析的主要方法包括文本聚类、主题模型、关键词提取等。文本挖掘的主题分析的特点是什么,优缺点是什么文本挖掘的主题分析是通过对
- 文本分析之词云图的绘制
亦旧sea
pythonnumpy数据分析
文本分析的词云图是一种可视化方式,用于展示文本中出现频率较高的词汇。词云图通常以词汇的出现频率为基础,将频率较高的词汇在图中显示为较大的字体,频率较低的词汇则以较小的字体显示。通过词云图,可以直观地了解文本的关键词和主题,帮助人们快速抓取文本的主要信息。文本分析的词云图可以应用于多个领域,包括舆情分析、市场研究、文本挖掘等。词云是一种对文本数据进行可视化展示的方式,通过将文本中的关键词以不同字体大
- 文本挖掘之情感分析详细介绍
亦旧sea
人工智能
文本挖掘的情感分析是什么文本挖掘的情感分析是指通过计算机技术和自然语言处理技术,对文本中的情绪、情感进行分析和识别的过程。它的目标是从文本中抽取出作者的情感倾向,通常可以分为正面情感、负面情感和中性情感三类。情感分析可以应用于社交媒体分析、舆情监测、产品评论分析等领域,可以帮助企业了解用户对产品或服务的态度和情感倾向,做出相应的决策和调整。文本挖掘的情感分析的特点是什么,优缺点是什么文本挖掘的情感
- 利用Minitab中的全新Python 集成开启探索之旅
MinitabUG
数据挖掘数据分析人工智能python
现如今,内容无处不在,随时可供访问!尼尔森(Nielsen)的一项研究发现,美国成人每天用于阅读、聆听、观看媒体以及与媒体互动的时间超过11小时。当下大家宅在家中,想必这个数值只会更高。可用内容层出不穷,您或许会想知道:是否存在一种定量方式,让我们能够深入了解可用文本?文本挖掘也称为文本数据挖掘,指的是从文本撷取高质量信息的过程,其终极目标是从文本变量中提取度量数值,供定量建模之用。文本挖掘为何重
- Python中的自然语言处理和文本挖掘
数据小爬虫
电商apiapipython自然语言处理easyuijava开发语言笔记人工智能
在Python中,自然语言处理(NLP)和文本挖掘是两个密切相关的领域,它们都涉及到对人类语言的处理和分析。下面我们将分别介绍这两个领域,以及如何使用Python进行自然语言处理和文本挖掘。一、自然语言处理(NLP)自然语言处理是一种让计算机理解和生成人类语言的技术。在Python中,有许多库可用于进行自然语言处理,其中最常用的是NLTK(NaturalLanguageToolkit)和spaCy
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不