Scrapy-redis实现分布式爬取的过程与原理

Scrapy是一个比较好用的Python爬虫框架,你只需要编写几个组件就可以实现网页数据的爬取。但是当我们要爬取的页面非常多的时候,单个主机的处理能力就不能满足我们的需求了(无论是处理速度还是网络请求的并发数),这时候分布式爬虫的优势就显现出来。

而Scrapy-Redis则是一个基于Redis的Scrapy分布式组件。它利用Redis对用于爬取的请求(Requests)进行存储和调度(Schedule),并对爬取产生的项目(items)存储以供后续处理使用。scrapy-redi重写了scrapy一些比较关键的代码,将scrapy变成一个可以在多个主机上同时运行的分布式爬虫。

原生的Scrapy的架构是这样子的:

Scrapy-redis实现分布式爬取的过程与原理_第1张图片

加上了Scrapy-Redis之后的架构变成了:

Scrapy-redis实现分布式爬取的过程与原理_第2张图片

scrapy-redis的官方文档写的比较简洁,没有提及其运行原理,所以如果想全面的理解分布式爬虫的运行原理,还是得看scrapy-redis的源代码才行,不过scrapy-redis的源代码很少,也比较好懂,很快就能看完。

scrapy-redis工程的主体还是是redis和scrapy两个库,工程本身实现的东西不是很多,这个工程就像胶水一样,把这两个插件粘结了起来。

scrapy-redis提供了哪些组件?

scrapy-redis所实现的两种分布式:爬虫分布式以及item处理分布式。分别是由模块scheduler和模块pipelines实现。

connection.py

负责根据setting中配置实例化redis连接。被dupefilter和scheduler调用,总之涉及到redis存取的都要使用到这个模块。

connect文件引入了redis模块,这个是redis-python库的接口,用于通过python访问redis数据库,可见,这个文件主要是实现连接redis数据库的功能(返回的是redis库的Redis对象或者StrictRedis对象,这俩都是可以直接用来进行数据操作的对象)。这些连接接口在其他文件中经常被用到。其中,我们可以看到,要想连接到redis数据库,和其他数据库差不多,需要一个ip地址、端口号、用户名密码(可选)和一个整形的数据库编号,同时我们还可以在scrapy工程的setting文件中配置套接字的超时时间、等待时间等。

dupefilter.py

负责执行requst的去重,实现的很有技巧性,使用redis的set数据结构。但是注意scheduler并不使用其中用于在这个模块中实现的dupefilter键做request的调度,而是使用queue.py模块中实现的queue。当request不重复时,将其存入到queue中,调度时将其弹出。

这个文件看起来比较复杂,重写了scrapy本身已经实现的request判重功能。因为本身scrapy单机跑的话,只需要读取内存中的request队列或者持久化的request队列(scrapy默认的持久化似乎是json格式的文件,不是数据库)就能判断这次要发出的request url是否已经请求过或者正在调度(本地读就行了)。而分布式跑的话,就需要各个主机上的scheduler都连接同一个数据库的同一个request池来判断这次的请求是否是重复的了。

在这个文件中,通过继承BaseDupeFilter重写他的方法,实现了基于redis的判重。根据源代码来看,scrapy-redis使用了scrapy本身的一个fingerprint接request_fingerprint,这个接口很有趣,根据scrapy文档所说,他通过hash来判断两个url是否相同(相同的url会生成相同的hash结果),但是当两个url的地址相同,get型参数相同但是顺序不同时,也会生成相同的hash结果(这个真的比较神奇。。。)所以scrapy-redis依旧使用url的fingerprint来判断request请求是否已经出现过。这个类通过连接redis,使用一个key来向redis的一个set中插入fingerprint(这个key对于同一种spider是相同的,redis是一个key-value的数据库,如果key是相同的,访问到的值就是相同的,这里使用spider名字+DupeFilter的key就是为了在不同主机上的不同爬虫实例,只要属于同一种spider,就会访问到同一个set,而这个set就是他们的url判重池),如果返回值为0,说明该set中该fingerprint已经存在(因为集合是没有重复值的),则返回False,如果返回值为1,说明添加了一个fingerprint到set中,则说明这个request没有重复,于是返回True,还顺便把新fingerprint加入到数据库中了。 DupeFilter判重会在scheduler类中用到,每一个request在进入调度之前都要进行判重,如果重复就不需要参加调度,直接舍弃就好了,不然就是白白浪费资源。

queue.py

其作用如dupefilter.py所述,但是这里实现了三种方式的queue:FIFO的SpiderQueue,SpiderPriorityQueue,以及LIFI的SpiderStack。默认使用的是第二种,这也就是出现之前文章中所分析情况的原因(链接)。

该文件实现了几个容器类,可以看这些容器和redis交互频繁,同时使用了我们上边picklecompat中定义的serializer。这个文件实现的几个容器大体相同,只不过一个是队列,一个是栈,一个是优先级队列,这三个容器到时候会被scheduler对象实例化,来实现request的调度。比如我们使用SpiderQueue最为调度队列的类型,到时候request的调度方法就是先进先出,而实用SpiderStack就是先进后出了。

我们可以仔细看看SpiderQueue的实现,他的push函数就和其他容器的一样,只不过push进去的request请求先被scrapy的接口request_to_dict变成了一个dict对象(因为request对象实在是比较复杂,有方法有属性不好串行化),之后使用picklecompat中的serializer串行化为字符串,然后使用一个特定的key存入redis中(该key在同一种spider中是相同的)。而调用pop时,其实就是从redis用那个特定的key去读其值(一个list),从list中读取最早进去的那个,于是就先进先出了。

这些容器类都会作为scheduler调度request的容器,scheduler在每个主机上都会实例化一个,并且和spider一一对应,所以分布式运行时会有一个spider的多个实例和一个scheduler的多个实例存在于不同的主机上,但是,因为scheduler都是用相同的容器,而这些容器都连接同一个redis服务器,又都使用spider名加queue来作为key读写数据,所以不同主机上的不同爬虫实例公用一个request调度池,实现了分布式爬虫之间的统一调度。

picklecompat.py

这里实现了loads和dumps两个函数,其实就是实现了一个serializer,因为redis数据库不能存储复杂对象(value部分只能是字符串,字符串列表,字符串集合和hash,key部分只能是字符串),所以我们存啥都要先串行化成文本才行。这里使用的就是python的pickle模块,一个兼容py2和py3的串行化工具。这个serializer主要用于一会的scheduler存reuqest对象,至于为什么不实用json格式,我也不是很懂,item pipeline的串行化默认用的就是json。

pipelines.py

这是是用来实现分布式处理的作用。它将Item存储在redis中以实现分布式处理。另外可以发现,同样是编写pipelines,在这里的编码实现不同于文章中所分析的情况,由于在这里需要读取配置,所以就用到了from_crawler()函数。

pipeline文件实现了一个item pipieline类,和scrapy的item pipeline是同一个对象,通过从settings中拿到我们配置的REDIS_ITEMS_KEY作为key,把item串行化之后存入redis数据库对应的value中(这个value可以看出出是个list,我们的每个item是这个list中的一个结点),这个pipeline把提取出的item存起来,主要是为了方便我们延后处理数据。

scheduler.py

此扩展是对scrapy中自带的scheduler的替代(在settings的SCHEDULER变量中指出),正是利用此扩展实现crawler的分布式调度。其利用的数据结构来自于queue中实现的数据结构。

scrapy-redis所实现的两种分布式:爬虫分布式以及item处理分布式就是由模块scheduler和模块pipelines实现。上述其它模块作为为二者辅助的功能模块。

你可能感兴趣的:(Spider)