Mysql优化看这篇文章就够了,超详细!!!

索引的优缺点

创建索引可以大大提高系统的性能。

第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。

第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。

第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。

第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?因为,增加索引也有许多不利的方面。

第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。

第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。

第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

索引的分类

我们先来看一下索引的分类,索引大致可按如下分类:

从数据结构角度

1、B+树索引(O(log(n))):关于B+树索引,可以参考 MySQL索引背后的数据结构及算法原理

2、hash索引:

a. 仅仅能满足"=",“IN"和”<=>"查询,不能使用范围查询
b. 其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引
c. 只有Memory存储引擎显示支持hash索引

从物理存储角度

1、聚集索引(clustered index)
一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序。
  聚集索引确定表中数据的物理顺序。聚集索引类似于电话簿,后者按姓氏排列数据。由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引。但该索引可以包含多个列(联合索引)(不过mysql的innodb只支持主键聚集索引,不支持联合聚集索引),就像电话簿按姓氏和名字进行组织一样。

2、非聚集索引(non-clustered index)
一种索引,该索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同,一个表可以包含多个非聚集索引。

从逻辑角度

1、普通索引或者单列索引

2、唯一索引

3、主键索引:主键索引是一种特殊的唯一索引,不允许有空值

4、多列索引(复合索引):复合索引指多个字段上创建的索引,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用。使用复合索引时遵循最左前缀集合

5、全文索引

在上文中,我们已经了解了数据结构及物理存储角度,今天我们主要从逻辑角度来看看索引:

1、普通索引:这是最基本的索引类型,而且它没有唯一性之类的限制。普通索引可以通过以下几种方式创建:
创建索引,例如CREATE INDEX <索引的名字> ON tablename (列的列表);
修改表,例如ALTER TABLE tablename ADD INDEX [索引的名字] (列的列表);
创建表的时候指定索引,例如CREATE TABLE tablename ( […], INDEX [索引的名字] (列的列表) );

2、唯一索引:这种索引和前面的“普通索引”基本相同,但有一个区别:索引列的所有值都只能出现一次,即必须唯一。唯一性索引可以用以下几种方式创建:
创建索引,例如CREATE UNIQUE INDEX <索引的名字> ON tablename (列的列表);
修改表,例如ALTER TABLE tablename ADD UNIQUE [索引的名字] (列的列表);
创建表的时候指定索引,例如CREATE TABLE tablename ( […], UNIQUE [索引的名字] (列的列表) );

3、主键索引

主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”。如果你曾经用过AUTO_INCREMENT类型的列,你可能已经熟悉主键之类的概念了。主键一般在创建表的时候指定,例如“CREATE TABLE tablename ( […], PRIMARY KEY (列的列表) ); ”。但是,我们也可以通过修改表的方式加入主键,例如“ALTER TABLE tablename ADD PRIMARY KEY (列的列表); ”。每个表只能有一个主键。

4、复合索引(组合索引、多列索引)

为了形象地对比单列索引和组合索引,为表添加多个字段:

CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, city VARCHAR(50) NOT NULL, age INT NOT NULL );
为了进一步榨取MySQL的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:

ALTER TABLE mytable ADD INDEX name_city_age (name(10),city,age);

建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。

如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。

建立这样的组合索引,其实是相当于分别建立了下面三组组合MySQL数据库索引:

usernname,city,age  usernname,city  usernname 为什么没有 city,age这样的组合索引呢?这是因为MySQL组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个SQL就会用到这个组合MySQL数据库索引:

SELECT * FROM mytable WHREE username=“admin” AND city=“郑州”

SELECT * FROM mytable WHREE username=“admin”

而下面几个则不会用到:

SELECT * FROM mytable WHREE age=20 AND city=“郑州” SELECT * FROM mytable WHREE city=“郑州”

关于最左前缀的问题,我们会在后面讨论到

5、全文索引

MySQL从3.23.23版开始支持全文索引和全文检索。在MySQL中,全文索引的索引类型为FULLTEXT。全文索引可以在VARCHAR或者 TEXT类型的列上创建。它可以通过CREATE TABLE命令创建,也可以通过ALTER TABLE或CREATE INDEX命令创建。对于大规模的数据集,通过ALTER TABLE(或者CREATE INDEX)命令创建全文索引要比把记录插入带有全文索引的空表更快。本文下面的讨论不再涉及全文索引,要了解更多信息,请参见mysql全文索引。

最左前缀原则

mysql建立多列索引(联合索引)有最左前缀的原则,即最左优先,如:

如果有一个2列的索引(col1,col2),则已经对(col1)、(col1,col2)上建立了索引;
如果有一个3列索引(col1,col2,col3),则已经对(col1)、(col1,col2)、(col1,col2,col3)上建立了索引;

1、b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+树是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道第一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。

2、比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。(这种情况无法用到联合索引)

关于最左前缀的使用,有下面两条说明:

最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
关于最左前缀的例子,请参考:https://www.kancloud.cn/kancloud/theory-of-mysql-index/41857
什么时候索引会失效
如果条件中有or,即使其中有条件带索引也不会使用(这也是为什么尽量少用or的原因)。注意:要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引
对于多列索引,不是使用的第一部分,则不会使用索引(即不符合最左前缀原则)
like查询是以%开头
如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引
如果mysql估计使用全表扫描要比使用索引快,则不使用索引
此外,查看索引的使用情况

show status like ‘Handler_read%’;
大家可以注意:
handler_read_key:这个值越高越好,越高表示使用索引查询到的次数
handler_read_rnd_next:这个值越高,说明查询低效

mysql sql语句优化

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by涉及的列上建立索引。
  2.应尽量避免在 where 子句中使用 !=或<> 操作符,否则将引擎放弃使用索引而进行全表扫描。
  3.应尽量避免在 where 子句中对字段进行 null 值 判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
  select id from t where num is null
  可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
  select id from t where num=0
  4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
  select id from t where num=10 or num=20
  可以这样查询:
  select id from t where num=10
  union all
  select id from t where num=20

5.下面的查询也将导致全表扫描:
  select id from t where name like ‘%abc%’
  对于 like ‘…%’ (不以 % 开头),可以应用 colunm上的index

6 .in 和 not in 也要慎用,否则会导致全表扫描,如:
  select id from t where num in(1,2,3)
  对于连续的数值,能用 between 就不要用 in 了:
  select id from t where num between 1 and 3

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
  select id from t where num=@num
  可以改为强制查询使用索引:
  select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
  select id from t where num/2=100
  应改为:
  select id from t where num=100*2
  9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
  select id from t where substring(name,1,3)=‘abc’–name以abc开头的id
  select id from t where datediff(day,createdate,‘2005-11-30’)=0–'2005-11-30’生成的id
  应改为:
  select id from t where name like ‘abc%’
  select id from t where createdate>=‘2005-11-30’ and createdate<‘2005-12-1’
  10.不要在 where 子句中的“=”【左边】进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是【复合索引】,那么必须使用到该索引中的【第一个字段】作为条件时才能保证系统使用该索引,否则该索引将不会被使用。并且应【尽可能】的让字段顺序与索引顺序相一致。(字段顺序也可以不与索引顺序一致,但是一定要包含【第一个字段】。)

12.不要写一些没有意义的查询,如需要生成一个空表结构:
  select col1,col2 into #t from t where 1=0
  这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
  create table #t(…)

13.很多时候用 exists 代替 in 是一个好的选择:
  select num from a where num in(select num from b)
  用下面的语句替换:
  select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
  15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
  16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
  17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
  18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
  19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
  20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
  21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
  22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
  23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
  24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
  25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
  26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
  27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
  28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
  29.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
  30.尽量避免大事务操作,提高系统并发能力。

Mysql的两种引擎的区别

Innodb引擎概述
Innodb引擎提供了对数据库ACID事务的支持,并且实现了SQL标准的四种隔离级别。该引擎还提供了行级锁和外键约束,它的设计目标是处理大容量数据库系统,它本身其实就是基于MySQL后台的完整数据库系统,MySQL运行时Innodb会在内存中建立缓冲池,用于缓冲数据和索引。但是该引擎不支持FULLTEXT类型的索引,而且它没有保存表的行数,当SELECT COUNT(*) FROM TABLE时需要扫描全表。当需要使用数据库事务时,该引擎当然是首选。由于锁的粒度更小,写操作不会锁定全表,所以在并发较高时,使用Innodb引擎会提升效率。但是使用行级锁也不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表。

MyISAM引擎概述
MyISAM是MySQL默认的引擎,但是它没有提供对数据库事务的支持,也不支持行级锁和外键,因此当INSERT(插入)或UPDATE(更新)数据时即写操作需要锁定整个表,效率便会低一些。不过和Innodb不同,MyISAM中存储了表的行数,于是SELECT COUNT(*) FROM TABLE时只需要直接读取已经保存好的值而不需要进行全表扫描。如果表的读操作远远多于写操作且不需要数据库事务的支持,那么MyISAM也是很好的选择。
简单介绍区别:
1、MyISAM是非事务安全的,而InnoDB是事务安全的

2、MyISAM锁的粒度是表级的,而InnoDB支持行级锁

3、MyISAM支持全文类型索引,而InnoDB不支持全文索引

4、MyISAM相对简单,效率上要优于InnoDB,小型应用可以考虑使用MyISAM

5、MyISAM表保存成文件形式,跨平台使用更加方便

应用场景:

1、MyISAM管理非事务表,提供高速存储和检索以及全文搜索能力,如果再应用中执行大量select操作,应该选择MyISAM
2、InnoDB用于事务处理,具有ACID事务支持等特性,如果在应用中执行大量insert和update操作,应该选择InnoDB

你可能感兴趣的:(SQL)