【整理】离散数学在计算机学科中的应用

离散数学在计算机学科中的应用

离散数学是计算机学科中许多专业课程的先行课程,离散数学和后续课程的关系密切,它是计算机科学与技术应用与研究的有力工具,在计算机科学中应用非常广泛。

离散数学是计算机科学与技术专业许多课程,如《数据结构》、《数据库原理》、《数字逻辑》、《软件工程》、《计算机网络》、《信息安全》、《计算机图形学》、《计算机体系结构》、《算法设计与分析》、《人工智能》等必不可少的先行课程。其中《数据结构》、《数据库原理》、《计算机网络》是所有计算机专业的必修基础课程。(课程与计算机体系见附表)

离散数学与数据结构的关系

离散数学与数据结构的关系非常紧密,数据结构课程描述的的对象有四种,分别是线形结构、集合、树形结构和图结构,这些对象都是离散数学研究的内容。线形结构中的线形表、栈、队列等都是根据数据元素之间关系的不同而建立的对象,离散数学中的关系这一章就是研究有关元素之间的不同关系的内容;数据结构中的集合对象以及集合的各种运算都是离散数学中集合论研究的内容;离散数学中的树和图论的内容为数据结构中的树形结构对象和图结构对象的研究提供了很好的知识基础。

离散数学与数据库原理的关系

目前数据库原理主要研究的数据库类型是关系数据库。关系数据库中的关系演算和关系模型需要用到离散数学中的谓词逻辑的知识;关系数据库的逻辑结构是由行和列构成的二维表,表之间的连接操作需要用到离散数学中的笛卡儿积的知识,表数据的查询、插入、删除和修改等操作都需要用到离散数学中的关系代数理论和数理逻辑中的知识。
命题逻辑中的联结词广泛应用在大量信息的检索、逻辑运算和位运算中,例如目前大部分网页检索引擎都支持布尔检索,使用NOT、AND、OR等联结词进行检索有助于快速找到特定主题的网页;信息在计算机内都表示为0或1构成的位串,通过对位串的运算可以对信息进行处理,计算机字位的运算与逻辑中的联结词的运算规则是一致的,掌握了联结词的运算为计算机信息的处理提供了很好的知识基础。在计算机硬件设计中,使用了联结词完备集中的与非和或非,使用与非门和或非门设计逻辑线路,替代了之前的非门、与门和或门的组合,优化了逻辑线路。
谓词逻辑可以表示关系模型中的关系操作,用谓词逻辑表示关系操作的关系演算形式是:{s[<属性表>]│R(s)},其中R(s)指的是s用该满足的谓词,例如要查询不及格的女同学的名字,关系演算的表达式为:{s│s∈student and s。sex=’w’and s。score<60}。

离散数学与计算机网络的关系

利用哈夫曼算法构造最优二叉树可以解决计算机网络通信中传输二进制数最优效率的问题。 

参考文献
[1]黄震.《离散数学》课程在计算机学科中的作用及其应用[J].赤峰学院学报(自然科学版),2011,(5): 264-265
[2]赵晓蓉.离散数学在计算机学科中应用浅析[J].黔南民族师范学院学报,2011,(6): 33-35
[3]谢晋.试谈离散数学在计算机学科中的重要性[J].黄石理工学院学报,2006,(1): 90-93
[4]宋燕红.浅谈离散数学在计算机学科中的重要性[J].科教导刊,2012,(15)

附表:
【整理】离散数学在计算机学科中的应用_第1张图片

你可能感兴趣的:(计算机系统)