大数据面试题知识点分析(七)

本篇博客继续HIVE,将所有HIVE优化相关的内容深入清楚:


hive 优化:

1)Map的优化

   • 增加map的个数:
        set mapred.map.tasks=10;
    • 减少map的个数(合并小文件):
        set mapred.max.split.size=100000000;
        set mapred.min.split.size.per.node=100000000;
        set mapred.min.split.size.per.rack=100000000;
        set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
    • Map端聚合(combiner):
        hive.map.aggr=true;

2)Reduce的优化

    • 设置reduce的个数:
        set mapred.reduce.tasks=10;
    • reduce任务处理的数据量
        set hive.exec.reducers.bytes.per.reducer=100000;

    • 避免使用可能启动mapreduce的查询语句

        1)group by
        2)order by(改用distribute by和sort by)

3)Join的优化

    • Join on的条件:
    SELECT a.val, b.val, c.val
    FROM a
    JOIN b ON (a.key = b.key1)
    JOIN c ON (a.key = c.key1)

    • Join的顺序:
    /*+ STREAMTABLE(a) */ :a被视为大表
    /*+ MAPJOIN(b) */:b被视为小表 

    SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val
    FROM a
    JOIN b ON (a.key = b.key1)
    JOIN c ON (c.key = b.key1);

4)数据倾斜的优化

    • 万能方法:
        hive.groupby.skewindata=true
    • 大小表关联:
        Small_table join big_table

    • 数据中有大量0或NULL:

        on case when (x.uid = '-' or x.uid = '0‘ or x.uid is null)
        then concat('dp_hive_search',rand()) else x.uid
        end = f.user_id;

    • 大大表关联:

        Select/*+MAPJOIN(t12)*/ *
        from dw_log t11
        join (
            select/*+MAPJOIN(t)*/ t1.*
            from (
                select user_id from dw_log group by user_id
                ) t
                join dw_user t1
                on t.user_id=t1.user_id
        ) t12
        on t11.user_id=t12.user_id

    • count distinct时存在大量特殊值:

        select cast(count(distinct user_id)+1 as bigint) as user_cnt
        from tab_a
        where user_id is not null and user_id <> ''

    • 空间换时间:

        select day,
        count(case when type='session' then 1 else null end) as session_cnt,
        count(case when type='user' then 1 else null end) as user_cnt
        from (
            select day,session_id,type
                from (
                    select day,session_id,'session' as type
                    from log
                    union all
                    select day user_id,'user' as type
                    from log
                )
                group by day,session_id,type
            ) t1
        group by day

5)其他的优化

    • 分区裁剪(partition):

        Where中的分区条件,会提前生效,不必特意做子查询,直接Join和GroupBy

    • 笛卡尔积:

        Join的时候不加on条件或者无效的on条件,Hive只能使用1个reducer来完成笛卡尔积

    • Union all:

    先做union all再做join或group by等操作可以有效减少MR过程,多个Select,也只需一个MR

    • Multi-insert & multi-group by:

    从一份基础表中按照不同的维度,一次组合出不同的数据

            FROM from_statement
            INSERT OVERWRITE TABLE table1 [PARTITION (partcol1=val1)] select_statement1 group by key1
            INSERT OVERWRITE TABLE table2 [PARTITION(partcol2=val2 )] select_statement2 group by key2
    • Automatic merge:

    当文件大小比阈值小时,hive会启动一个mr进行合并

            hive.merge.mapfiles = true 是否和并 Map 输出文件,默认为 True
            hive.merge.mapredfiles = false 是否合并 Reduce 输出文件,默认为 False
            hive.merge.size.per.task = 256*1000*1000 合并文件的大小

    • Multi-Count Distinct:

    一份表中count多个参数(必须设置参数:set hive.groupby.skewindata=true;)
            select dt, count(distinct uniq_id), count(distinct ip)
            from ods_log where dt=20170301 group by dt
    • 并行实行:

        hive执行开启:set hive.exec.parallel=true

大数据面试题知识点分析(七)_第1张图片

你可能感兴趣的:(大数据面试,大数据面试题知识点分析)