上面那些定义总结起来可以这样说:通过使用信号量生成令牌来授权,在任一时刻只能有一个执行线程访问代码的临界区域。临界区域是指执行数据更新的代码需要独占式地执行。而信号量就可以提供这样的一种访问机制,让一个临界区同一时间只有一个线程在访问它,也就是说信号量是用来调协进程对共享资源的访问的一种手段。
对于与信号量操作有关的接口,Linux下主要提供了以下几个函数,值得注意的是,在Linux下的C接口中,这些函数的操作对象都是信号量值组,也就是一个信号量值的链表
int semget(key_t key, int num_sems, int sem_flags);
该函数的作用是创建一个新信号量或取得一个已有信号量。
第一个参数key是整数值(唯一非零),就是Linux线程操作中经常用到的键值,可以通过ftok函数得到,不相关的进程可以通过它访问一个信号量,它代表程序可能要使用的某个资源,程序对所有信号量的访问都是间接的,程序先通过调用semget函数并提供一个键,再由系统生成一个相应的信号标识符(semget函数的返回值),只有semget函数才直接使用信号量键,所有其他的信号量函数使用由semget函数返回的信号量标识符。如果多个程序使用相同的key值,key将负责协调工作。
第二个参数num_sems指定需要的信号量数目,它的值几乎总是1。
第三个参数sem_flags是一组标志,当想要当信号量不存在时创建一个新的信号量,可以和值IPC_CREAT做按位或操作。设置了IPC_CREAT标志后,即使给出的键是一个已有信号量的键,也不会产生错误。而IPC_CREAT | IPC_EXCL则可以创建一个新的,唯一的信号量,如果信号量已存在,返回一个错误。
semget函数成功返回一个相应信号标识符(非零),失败返回-1
int semop(int sem_id, struct sembuf *sops, size_t nsops);
该函数的作用是改变信号量的值,其实就是为了信号量的PV操作而准备的,这个函数可以讲的地方比较多,下面会详细介绍:
函数的第一个参数 semid 为信号量集的标识符;
第2个参数 sops 指向进行操作的结构体数组的首地址,在 semop 的第二个参数 sops 指向的结构体数组中,每个 sembuf 结构体对应一个特定信号的操作。因此对信号量进行操作必须熟悉该数据结构,该结构定义在 linux/sem.h,如下所示:
struct sembuf{
unsigned short sem_num; //信号在信号集中的索引,0代表第一个信号,1代表第二个信号
short sem_op; //操作类型
short sem_flg; //操作标志
};
对于该结构中各个成员都具有特殊的含义,具体含义的介绍如下:
sem_op 参数:
sem_op > 0 信号加上 sem_op 的值,表示进程释放控制的资源;
sem_op = 0 如果sem_flg没有设置IPC_NOWAIT,则调用进程进入睡眠状态,直到信号量的值为0;否则进程不会睡眠,直接返回 EAGAIN
sem_op < 0 信号加上 sem_op 的值。若没有设置 IPC_NOWAIT ,则调用进程阻
塞,直到资源可用;否则进程直接返回EAGAIN
sem_flg 参数:
该参数可设置为 IPC_NOWAIT 或 SEM_UNDO 两种状态。只有将 sem_flg 指定为 SEM_UNDO 标志后,semadj (所指定信号量针对调用进程的调整值)才会更新。 此外,如果此操作指定SEM_UNDO,系统更新过程中会撤消此信号灯的计数(semadj)。此操作可以随时进行---它永远不会强制等待的过程。调用进程必须有改变信号量集的权限。
sem_flg公认的标志是 IPC_NOWAIT 和 SEM_UNDO。如果操作指定SEM_UNDO,当该进程终止时它将会自动撤消。
第3个参数 nsops 指出将要进行操作的信号的个数。semop 函数调用成功返回 0,失败返回 -1。
该函数所做的对于信号量的操作都是原子操作,即整个行为是一个整体,是不可打断的。所有操作是否可以立即执行取决于在个人sem_flg领域的IPC_NOWAIT标志的存在。
int semctl(int sem_id, int sem_num, int command, ...);
函数的第一个参数 semid 为信号量集的标识符;函数的第二个参数sem_num则是表示即将要进行操作的信号量的编号,即信号量集合的索引值,其中第一个信号量的索引值为0。
函数的第3个参数command代表将要在集合上执行的命令,其取值含义如下,通常用特定的宏代替:
IPC_STAT:获取某个信号量集合的semid_ds结构,并将其储存在semun联合体的buf参数所指的地址之中
IPC_SET:设置某个集合的semid_ds结构的ipc_perm成员的值,该命令所取的值是从semun联合体的buf参数中取到的
IPC_RMID:从内核删除该信号量集合
GETALL:用于获取集合中所有信号量的值,整数值存放在无符号短整数的一个数组中,该数组有联合体的array成员所指定
GETNCNT:返回当前正在等待资源的进程的数目
GETPID:返回最后一次执行PV操作(semop函数调用)的进程的PID
GETVAL:返回集合中某个信号量的值
GETZCNT:返回正在等待资源利用率达到百分之百的进程的数目
SETALL:把集合中所有信号量的值,设置为联合体的array成员所包含的对应值
SETVAL:将集合中单个信号量的值设置为联合体的val成员的值
其中semun联合体的结构如下:
union semun{
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *__buf;
};
对于该函数,只有当command取某些特定的值的时候,才会使用到第4个参数,第4个参数它通常是一个union semum结构,定义如下:
union semun{
int val;
struct semid_ds *buf;
unsigned short *arry;
};
对于第4个参数arg,
当执行SETVAL命令时用到这个成员,他用于指定要把信号量设置成什么值,涉及成员:val
在命令IPC_STAT/IPC_SET中使用,它代表内核中所使用内部信号量数据结构的一个复制 ,涉及成员:buf
在命令GETALL/SETALL命令中使用时,他代表指向整数值一个数组的指针,在设置或获取集合中所有信号量的值的过程中,将会用到该数组,涉及成员:array
剩下的还有一些用法都将在系统内核中的信号量代码使用,应用程序开发中使用很少,这里也就不介绍了。
这里列举一个别人的样例,主要是为了展示信号量控制进程的操作代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
union semun
{
int val;
struct semid_ds *buf;
unsigned short *arry;
};
static int sem_id = 0;
static int set_semvalue();
static void del_semvalue();
static int semaphore_p();
static int semaphore_v();
int main(int argc, char *argv[])
{
char message = 'S';
int i = 0;
//创建信号量
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);
if(argc > 1)
{
//程序第一次被调用,初始化信号量
if(!set_semvalue())
{
fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);
}
//设置要输出到屏幕中的信息,即其参数的第一个字符
message = argv[1][0];
sleep(2);
}
cout< 1)
{
//如果程序是第一次被调用,则在退出前删除信号量
sleep(3);
del_semvalue();
}
exit(EXIT_SUCCESS);
}
static int set_semvalue()
{
//用于初始化信号量,在使用信号量前必须这样做
union semun sem_union;
sem_union.val = 1;
if(semctl(sem_id, 0, SETVAL, sem_union) == -1)
return 0;
return 1;
}
static void del_semvalue()
{
//删除信号量
union semun sem_union;
if(semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore\n");
else
fprintf(stdout, "已经删除信号量\n");
}
static int semaphore_p()
{
//对信号量做减1操作,即等待P(sv)
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1;//P()
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_p failed\n");
return 0;
}
return 1;
}
static int semaphore_v()
{
//这是一个释放操作,它使信号量变为可用,即发送信号V(sv)
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1;//V()
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_v failed\n");
return 0;
}
return 1;
}
编译及运行指令为:
g++ -o 可执行文件名 代码文件名 //编译
./可执行文件名 1 2 & ./可执行文件名 //运行
运行效果图如下: