参考:
Cascade Classifier Training
[OpenCV3]级联分类器训练——traincascade快速使用详解
正负样本生成脚本
import sys
import numpy as np
import xml.etree.ElementTree as ET
import cv2
import os
import numpy.random as npr
from utils import IoU
from utils import ensure_directory_exists
save_dir = "/home/rui"
anno_path = "./firepos/annotation"
im_dir = "./firepos/images"
pos_save_dir = os.path.join(save_dir, "./res/positive")
neg_save_dir = os.path.join(save_dir, './res/negative')
ensure_directory_exists(pos_save_dir)
ensure_directory_exists(neg_save_dir)
names_xml = os.listdir(anno_path)
img_rule_h = 45
img_rule_w = 45
size = img_rule_h
num = len(names_xml)
print "%d pics in total" % num
p_idx = 0 # positive
n_idx = 0 # negative
d_idx = 0 # dont care
idx = 0
box_idx = 0
for ne_xml in names_xml:
tree = ET.parse(os.path.join(anno_path, ne_xml))
root = tree.getroot()
loc_bbox = []
width_xml = root.find("size").find("width").text
height_xml = root.find("size").find("height").text
for node in root.findall('object'):
label_ = node.find('name').text
if label_ == "fire":
xmin_ = node.find('bndbox').find('xmin').text
ymin_ = node.find('bndbox').find('ymin').text
xmax_ = node.find('bndbox').find('xmax').text
ymax_ = node.find('bndbox').find('ymax').text
loc_bbox.append(xmin_)
loc_bbox.append(ymin_)
loc_bbox.append(xmax_)
loc_bbox.append(ymax_)
im_path = "{}/{}".format(im_dir, ne_xml.split(".")[0])
if os.path.exists(im_path + ".jpg"):
im_path = "{}.jpg".format(im_path)
else:
im_path = "{}.JPG".format(im_path)
boxes = np.array(loc_bbox, dtype=np.float32).reshape(-1, 4)
img = cv2.imread(im_path)
h, w, c =img.shape
if h != int(height_xml) or w != int(width_xml):
print h, height_xml,w,width_xml
continue
idx += 1
if idx % 100 == 0:
print idx, "images done"
height, width, channel = img.shape
neg_num = 0
while neg_num < 700:
size_new = 0.0
if width > height:
size_new = npr.randint(img_rule_h + 1, max(img_rule_h, height / 2 - 1))
else:
size_new = npr.randint(img_rule_w + 1, max(img_rule_w, width / 2 - 1))
size_new = int(size_new)
nx = npr.randint(0, width - size_new)
ny = npr.randint(0, height - size_new)
crop_box = np.array([nx, ny, nx + size_new, ny + size_new])
Iou = IoU(crop_box, boxes)
cropped_im = img[ny : ny + size_new, nx : nx + size_new, :]
resized_im = cv2.resize(cropped_im, (img_rule_w, img_rule_h), interpolation=cv2.INTER_LINEAR)
if len(Iou) != 0:
if np.max(Iou) < 0.1:
# Iou with all gts must below 0.3
save_file = os.path.join(neg_save_dir, "%s.jpg"%n_idx)
cv2.imwrite(save_file, resized_im)
n_idx += 1
neg_num += 1
else:
# Iou with all gts must below 0.3
save_file = os.path.join(neg_save_dir, "%s.jpg"%n_idx)
cv2.imwrite(save_file, resized_im)
n_idx += 1
neg_num += 1
for box in boxes:
# box (x_left, y_top, x_right, y_bottom)
x1, y1, x2, y2 = box
w = x2 - x1 + 1
h = y2 - y1 + 1
# if float(w) / h < 2:
# continue
# ignore small faces
# in case the ground truth boxes of small faces are not accurate
if w < img_rule_w or h < img_rule_h or x1 < 0 or y1 < 0:
continue
# generate positive examples and part faces
pos_nums = 300
while pos_nums > 0:
size_new = npr.randint(int(pow(w * h, 0.5) - 1), int(max(w, h)))
# delta here is the offset of box center
delta_x = npr.randint(int(-size_new * 0.1), int(size_new * 0.1))
delta_y = npr.randint(int(-size_new * 0.1), int(size_new * 0.1))
nx1 = max(x1 + w / 2 + delta_x - size_new / 2, 0)
ny1 = max(y1 + h / 2 + delta_y - size_new / 2, 0)
nx2 = min(width, nx1 + size_new)
ny2 = min(height, ny1 + size_new)
if nx2 > width or ny2 > height:
continue
crop_box = np.array([nx1, ny1, nx2, ny2])
cropped_im = img[int(ny1) : int(ny2), int(nx1) : int(nx2), :]
resized_im = cv2.resize(cropped_im, (img_rule_w, img_rule_h))
box_ = box.reshape(1, -1)
pos_nums -= 1
save_file = os.path.join(pos_save_dir, "%s.jpg"%p_idx)
cv2.imwrite(save_file, resized_im)
p_idx += 1
box_idx += 1
print "%s images done, pos: %s, neg: %s"%(idx, p_idx, n_idx)
将正样本写入
import os
pos_dir = "/home/rui/res/positive"
pos_list = os.listdir(pos_dir)
f = open("/home/rui/temp.txt", "w")
for im in pos_list:
name = "positive/{} 1 0 0 45 45\n".format(im)
print name
f.writelines(name)
f.close()
find -name *.jpg >> neg.txt