机器学习与深度学习神器!凸优化(Convex Optimization)学习必备

Boyd的Convex Optimization是神书,真的想搞科研可以学一下这个书,但这个书理论多,侧重凸分析的基础,花了非常长的篇幅介绍函数的凸性、对偶等,但在机器学习中,至少在刚入门不久的阶段这些东西用的不算多,或者说在大多数情况下只需要对这些有基本概念就行

所以建议读两篇更短的文章,ubeck的《Convex Optimization: Algorithms and Complexity》,接下来再读Bottou、Curtis和Nocedal合作写的《Optimization Methods for Large-Scale Machine Learning》。前者从凸性的基本概念开始介绍,把常用的一阶算法都做了系统的介绍,它不需要任何优化基础就可以读懂;后者介绍了机器学习和优化交叉领域目前最新的研究成果,这个survey非常新,去年才写出来,今年也做过更新,而且作者也很牛,Bottou是在机器学习和优化交叉方向最优秀的几位研究者之一,Nocedal是鼎鼎大名的传统优化大牛(目前在世的人中排前5应该不过分)  

你可能感兴趣的:(数学相关知识)