本文是基于Windows系统环境,学习和测试numpy模块:
Windows 10
PyCharm 2018.3.5 for Windows (exe)
python 3.6.8 Windows x86 executable installer
import numpy as np
a = np.array([])
print(a.size) # size = 0
b = np.array([], dtype=int)
import numpy as np
a = np.array([1,2,3]) # 初始化一个3×1的向量
print(np.shape(a)) # np.shape(a)=(3,)
print(a.size) # size =3
import numpy as np
a = np.array([[1,2,3],[2,3,4]]) # 初始化一个2×3的矩阵
print(np.shape(a)) # np.shape(a)=(2,3)
print(a.size) # size =6
import numpy as np
a = np.zeros(6) # 创建长度为6的,元素都是0一维数组
print(np.shape(a)) # np.shape(a)=(6,)
print(a.size) # size =6
import numpy as np
a = np.ones(6) # 创建长度为6的,元素都是1一维数组
print(np.shape(a)) # np.shape(a)=(6,)
print(a.size) # size =6
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
a = np.append(a, b) # a = [1, 2, 3, 4, 5, 6]
import numpy as np
data=np.arange(9).reshape(3,3)
print(data[0]) # 输出第一行
import numpy as np
data=np.arange(9).reshape(3,3)
print(data[:, 0]) # 输出第一列
import numpy as np
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 1]])
target = 1
target_index = np.argwhere(data == target)
print(target_index) # 返回一个下标矩阵
print(np.shape(target_index)) # np.shape(target_index)=(2,2)
# data 的类型不仅可以是array,也可以是Series
import numpy as np
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
index1 = np.where(data > 3)
print(index1[0]) # [3 4 5 6 7 8]
index2 = np.where((data > 3) & (data < 7))
print(index2[0]) # [3 4 5]
index3 = np.where((data > 3) & (data < 7), 1, 0)
print(index3) # [0 0 0 1 1 1 0 0 0]
import numpy as np
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
b = np.array([[10,11,12],[14,15,16],[17,18,19]])
#注意水平堆叠,输入的数组对应处需要相同的维度(列数相同)
c = np.hstack((a,b))
print(c)
# 输出结果
# [[ 1 2 3 10 11 12]
# [ 4 5 6 14 15 16]
# [ 7 8 9 17 18 19]]
import numpy as np
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
b = np.array([[10,11,12],[14,15,16],[17,18,19]])
#注意垂直堆叠,输入的数组对应处需要相同的维度(行数相同)
c = np.vstack((a,b))
print(c)
# 输出结果
# [[ 1 2 3]
# [ 4 5 6]
# [ 7 8 9]
# [10 11 12]
# [14 15 16]
# [17 18 19]]
from collections import Counter
import numpy
l = np.array([1, 1, 2, 3, 3, 3])
count = Counter(l) #类型:
count_dict = dict(count) #类型:
print(count_dict)
import numpy as np
l = np.array([[1,2], [3,4]])
print(np.multiply(a,b))
# 1 4
# 9 16
# np.dot(a,b) 或 np.matmul(a,b) 或 a.dot(b)
import numpy as np
l = np.array([[1,2], [3,4]])
print(l)
print(np.dot(a, a))
# 7 10
# 15 22
import numpy as np
from numpy.linalg import *
l = np.array([[1,2], [3,4]])
print(l)
print(inv(l))
import numpy as np
from numpy.linalg import *
l = np.array([[1,2], [3,4]])
print(l)
print(l.transpose())
import numpy as np
from numpy.linalg import *
l = np.array([[1,2], [3,4]])
print(l)
print(det(l))
import numpy as np
from numpy.linalg import *
l = np.array([[1,2], [3,4]])
print(l)
print(eig(l))
import numpy as np
from numpy.linalg import *
l = np.array([[1,2], [3,4]])
y = np.array([[6],[8]])
print(l)
print(solve(l,y))
# 1X+2Y=6
# 3X+4Y=8