本文是基于Windows系统环境,学习和测试DataFrame模块:
Windows 10
PyCharm 2018.3.5 for Windows (exe)
python 3.6.8 Windows x86 executable installer
import pandas as pd
import numpy as np
data = pd.DataFrame()
print(np.shape(data)) # (0,0)
import pandas as pd
import numpy as np
dict_a = {'name': ['xu', 'wang'], 'gender': ['male', 'female']}
data = pd.DataFrame(dict_a)
print(np.shape(data)) # (2,2)
print(data)
# data =
# name gender
# 0 xu male
# 1 wang female
import pandas as pd
import numpy as np
mat = np.random.randn(3,4)
df = pd.DataFrame(mat)
df.columns = ['a','b','c','d']
print(df)
import pandas as pd
import numpy as np
mat = np.random.randn(3,4)
df = pd.DataFrame(mat)
df.columns = ['a','b','c','d']
print(df)
n = np.array(df)
print(n)
import pandas as pd
import numpy as np
data = pd.DataFrame()
data['ID'] = range(0,10)
print(np.shape(data)) # (10,1)
import pandas as pd
import numpy as np
df = pd.DataFrame(columns=('a', 'b', 'c'))
df = df.append([{'a': 10.0, 'b': 'name', 'c': 10}], ignore_index=True)
import pandas as pd
import numpy as np
dict_a = {'name': ['xu', 'wang'], 'gender': ['male', 'female']}
data = pd.DataFrame(dict_a)
data['country'] = 'China'
print(data)
# data =
# name gender country
# 0 xu male China
# 1 wang female China
import pandas as pd
norepeat_df = df.drop_duplicates(subset=['A_ID', 'B_ID'], keep='first')
# norepeat_df = df.drop_duplicates(subset=[1, 2], keep='first')
# keep=False时,就是去掉所有的重复行
# keep=‘first'时,就是保留第一次出现的重复行
# keep='last'时就是保留最后一次出现的重复行。
df.shape[0] # 行数
df.shape[1] # 列数
df.T
a = np.array([[0.03, 0.05, 1.22], [0.04, 4.54, 3.68]])
df = pd.DataFrame(a.T, columns=['a', 'b'])
df.round(2) # 保留两位小数,四舍五入
print(df)
# a b
# 0 0.0 0.0
# 1 0.1 4.5
# 2 1.2 3.7
a = np.array([[3, 1, 2], [2, 4, 3]])
df = pd.DataFrame(a.T, columns=['a', 'b'])
print(df)
# a b
# 0 3 2
# 1 1 4
# 2 2 3
f = lambda x: np.mean(x)
t1 = df.apply(f) # 按列处理
print(t1)
# a 2.0
# b 3.0
t2 = df.apply(f, axis=1) # 按行处理
print(t2)
# 0 2.5
# 1 2.5
# 2 2.5
df.loc[df['columnName']=='the value']
import pandas as pd
dict_a = {'name': ['.xu', 'wang'], 'gender': ['male', 'female.']}
data = pd.DataFrame(dict_a)
print(data)
# data =
# name gender
# 0 .xu male
# 1 wang female.
data['name'] = data['name'].str.strip('.') # 删除'.'
# data['name'] = data['name'].str.strip() # 删除空格
print(data)
# data =
# name gender
# 0 xu male
# 1 wang female.
import pandas as pd
data = pd.DataFrame()
data['ID'] = range(0,3)
# data =
# ID
# 0 0
# 1 1
# 2 2
data.index = range(1,len(data) + 1)
# data =
# ID
# 1 0
# 2 1
# 3 2
import pandas as pd
data = pd.DataFrame()
print(data)
# data =
# ID name
# 0 0 xu
# 1 1 wang
# 2 2 li
data = data[['name','ID']]
# data =
# name ID
# 0 xu 0
# 1 wang 1
# 2 li 2
import pandas as pd
data = pd.DataFrame()
print(data)
# data =
# ID name
# 0 0 xu
# 1 1 wang
# 2 2 li
print(data.columns.values.tolist())
# ['ID', 'name']
import pandas as pd
data = pd.DataFrame()
print(data)
# data =
# ID name
# 0 0 xu
# 1 1 wang
# 2 2 li
print(data._stat_axis.values.tolist())
# [0, 1, 2]
import pandas as pd
import numpy as py
data = pd.DataFrame(np.arange(6).reshape((2, 3)))
print(data)
# data =
# 0 1 2
# 0 0 1 2
# 1 3 4 5
cols = data.columns.values
for i in range(len(cols)):
print(data[cols[i]])
data = pd.DataFrame(np.arange(6).reshape((2, 3)), columns=['a', 'b', 'c'])
print(data)
# data =
# 0 1 2
# 0 0 1 2
# 1 3 4 5
cols = data.columns.values
for i in range(len(cols)):
print(data[cols[i]])
import pandas as pd
data = pd.read_csv('user.csv')
print (data)
import pandas as pd
data = pd.read_csv('test1.csv')
data.to_csv("test2.csv",index=False, header=True)
from numpy import nan as NaN
import pandas as pd
data = pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
print (data)
# data =
# 1 2 3
# NaN NaN 2
# NaN NaN NaN
# 8 8 NaN
data = data.dropna()
# DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
# axis: 0 or 'index'表示去除行 1 or 'columns'表示去除列
# how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除
# thresh: 整数n,表示每行或列中至少有n个元素补位NaN,否则去除
# subset: ['name', 'gender'] 在子集中去除NaN值,子集也可以index,但是要配合axis=1
# inplace: 如何为True,则执行操作,然后返回None
print(data)
# data =
# 1 2 3