1、libSVM 3.23
这套库可以从 http://www.csie.ntu.edu.tw/~cjlin/ 免费获得
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html?js=1#svm-toy-js
2、视频
http://v.youku.com/v_showMini/id_XMjc2NTY3MzYw_ft_131.html
3、详细介绍
http://www.matlabsky.com/thread-11925-1-1.html
4、其他
https://sites.google.com/site/kittipat/libsvm_matlab
5、相关数据集
http://download.csdn.net/detail/abcjennifer/4215779 (大户人家)
File->set path ->add with subfolders->加入libsvm-3.##
model=svmtrain(label,data,svmParams);
其中,label为标签,data为训练数据(每一行为一个样本的所有数据,列数代表的是样本的个数),每一个样本都要对应一个标签(分类问题的话一般为二分类问题,也就是每一个样本对应一个标签)。
-t=0:线性核
-t=1:多项式核
-t=2:径向基函数(高斯)
-t=3:sigmod核函数
-t=4:预计算核
这个参数在svmtrain不写的时候,model为一个结构体,是一个模型,可以带到svmpredict中直接使用,写出来的时候,出来的是一个训练模型的准确率,为一个数值。
用法: svmtrain [options] training_set_file [model_file]
其中, options为操作参数, 可用的选项即表示的涵义如下所示:
-s 设置svm类型:
0 – C-SVC
1 – v-SVC
2 – one-class-SVM
3 – ε-SVR
4 – n – SVR
-t 设置核函数类型, 默认值为2
0 — 线性核: μ‘∗ν
1 — 多项式核: (γ∗μ‘∗ν+coef0)degree
2 — RBF核: exp(–γ∗∥μ−ν∥2)
3 — sigmoid 核: tanh(γ∗μ‘∗ν+coef0)
-d degree: 核函数中的degree设置(针对多项式核函数)(默认3);
-g r(gama): 核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k);
-r coef0: 核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0);
-c cost: 设置C-SVC, e -SVR和v-SVR的参数(损失函数)(默认1);
-n nu: 设置v-SVC, 一类SVM和v- SVR的参数(默认0.5);
-p p: 设置e -SVR 中损失函数p的值(默认0.1);
-m cachesize: 设置cache内存大小, 以MB为单位(默认40);
-e eps: 设置允许的终止判据(默认0.001);
-h shrinking: 是否使用启发式, 0或1(默认1);
-wi weight: 设置第几类的参数C为weight*C (C-SVC中的C) (默认1);
-v n: n-fold交互检验模式, n为fold的个数, 必须大于等于2;
-b 概率估计: 是否计算SVC或SVR的概率估计, 可选值0或1, 默认0;
model_file: 可选项, 为要保存的结果文件, 称为模型文件, 以便在预测时使用.
代码1:
[bestacc,bestc,bestg] = SVMcg(train_labels,train_data,-2,4,-4,4,3,0.5,0.5,0.9);
svmParams = ['-c ',num2str(bestc),' -g ',num2str(bestg)];
model = svmtrain(train_labels,train_data,svmParams);
[pre,acc] = svmpredict(test_labels,test_data,model);
代码2:
function [bestacc,bestc,bestg] = SVMcg(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
%SVMcg cross validation by faruto
%Email:[email protected] QQ:516667408 http://blog.sina.com.cn/faruto BNU
%last modified 2009.8.23
%Super Moderator @ www.ilovematlab.cn
% 使用说明.如下:
% [bestacc,bestc,bestg] = SVMcg(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
%
% train_label:训练 集标签.要求与libsvm工具箱中要求一致.
% train:训练集.要求与libsvm工具箱中要求一致.
% cmin:惩罚参数c的变化范围的最小值(取以2为底的对数后),即 c_min = 2^(cmin).默认为 -5
% cmax:惩罚参数c的变化范围的最大值(取以2为底的对数后),即 c_max = 2^(cmax).默认为 5
% gmin:参数g的变化范围的最小值(取以2为底的对数后),即 g_min = 2^(gmin).默认为 -5
% gmax:参数g的变化范围的最小值(取以2为底的对数后),即 g_min = 2^(gmax).默认为 5
%
% v:cross validation的参数,即给测试集分为几部分进行cross validation.默认为 3
% cstep:参数c步进的大小.默认为 1
% gstep:参数g步进的大小.默认为 1
% accstep:最后显示准确率图时的步进大小. 默认为 1.5
%% about the parameters of SVMcg
if nargin < 10
accstep = 1.5;
end
if nargin < 8
accstep = 1.5;
cstep = 1;
gstep = 1;
end
if nargin < 7
accstep = 1.5;
v = 3;
cstep = 1;
gstep = 1;
end
if nargin < 6
accstep = 1.5;
v = 3;
cstep = 1;
gstep = 1;
gmax = 5;
end
if nargin < 5
accstep = 1.5;
v = 3;
cstep = 1;
gstep = 1;
gmax = 5;
gmin = -5;
end
if nargin < 4
accstep = 1.5;
v = 3;
cstep = 1;
gstep = 1;
gmax = 5;
gmin = -5;
cmax = 5;
end
if nargin < 3
accstep = 1.5;
v = 3;
cstep = 1;
gstep = 1;
gmax = 5;
gmin = -5;
cmax = 5;
cmin = -5;
end
%% X:c Y:g cg:acc
[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);
[m,n] = size(X);
cg = zeros(m,n);
%% record acc with different c & g,and find the bestacc with the smallest c
bestc = 0;
bestg = 0;
bestacc = 0;
basenum = 2;
for i = 1:m
for j = 1:n
cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) )];
cg(i,j) = svmtrain(train_label, train, cmd);
if cg(i,j) > bestacc
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end
if ( cg(i,j) == bestacc && bestc > basenum^X(i,j) )
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end
end
end
%% to draw the acc with different c & g
[C,h] = contour(X,Y,cg,60:accstep:100);
clabel(C,h,'FontSize',10,'Color','r');
xlabel('log2c','FontSize',10);
ylabel('log2g','FontSize',10);
grid on;