关键词:灰色预测、Python、pandas、numpy
本文的目的是用Python和类对灰色预测进行封装
1.灰色预测概述
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:
(1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
(4) 系统预测,对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。
上述灰色预测方法的共同特点是:
(1)允许少数据预测;
(2)允许对灰因果律事件进行预测,例如:
灰因白果律事件:在粮食生产预测中,影响粮食生产的因子很多,多到无法枚举,故为灰因,然而粮食产量却是具体的,故为白果。粮食预测即为灰因白果律事件预测。
白因灰果律事件:在开发项目前景预测时,开发项目的投入是具体的,为白因,而项目的效益暂时不很清楚,为灰果。项目前景预测即为灰因白果律事件预测。
(3)具有可检验性,包括:建模可行性的级比检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。
2.GM(1,1)模型理论
GM(1,1)模型适合具有较强的指数规律的数列,只能描述单调的变化过程。已知元素序列数据:
做一次累加生成(1-AGO)序列:
其中
,
令为的紧邻均值生成序列:
其中,
建立GM(1,1)的灰微分方程模型为:
其中,为发展系数,为灰色作用量。设为待估参数向量,即,则灰微分方程的最小二乘估计参数列满足
其中
再建立灰色微分方程的白化方程(也叫影子方程):
白化方程的解(也叫时间响应函数)为
那么相应的GM(1,1)灰色微分方程的时间响应序列为:
取,
则
再做累减还原可得
即为预测方程。
注1:原始序列数据不一定要全部使用,相应建立的模型也会不同,即和不同;
注2:原始序列数据必须要等时间间隔、不间断。
3.算法步骤
(1) 数据的级比检验
为了保证灰色预测的可行性,需要对原始序列数据进行级比检验。
对原始数据列,
计算序列的级比:
若所有的级比都落在可容覆盖内,则可进行灰色预测;否则需要对做平移变换,,使得满足级比要求。
(2) 建立GM(1,1)模型,计算出预测值列。
(3) 检验预测值:
① 相对残差检验,计算
若 ,则认为达到一般要求,若 ,则认为达到较高要求;
② 级比偏差值检验
根据前面计算出来的级比, 和发展系数, 计算相应的级比偏差:
若, 则认为达到一般要求,若, 则认为达到较高要求。
(4) 利用模型进行预测。
import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
matplotlib.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
下面的matplotlib是作图用的,如果不做图可以不用引入
灰色建模的主体应该分为几步:
(1)引入、整理数据
(2)校验数据是否合格
(3)GM(1,1)建模
(4)将最新的预测数据当做真实值继续预测
(5)输出结果
因此打好的框架如下:
class GrayForecast():
#初始化
def __init__(self, data, datacolumn=None):
pass
#级比校验
def level_check(self):
pass
#GM(1,1)建模
def GM_11_build_model(self, forecast=5):
pass
#预测
def forecast(self, time=5, forecast_data_len=5):
pass
#打印日志
def log(self):
pass
#重置
def reset(self):
pass
#作图
def plot(self):
pass
作为初始化的方法,我们希望它能将数据格式化存储,并且可使用的类型越多越好,在这里我先实现能处理三种类型:一维列表、DataFrame、Series。如果处理DataFrame可能会出现不止一维的情况,于是设定一个参数datacolumn,用于处理传入DataFrame不止一列数据到底用哪个的问题
def __init__(self, data, datacolumn=None):
if isinstance(data, pd.core.frame.DataFrame):
self.data=data
try:
self.data.columns = ['数据']
except:
if not datacolumn:
raise Exception('您传入的dataframe不止一列')
else:
self.data = pd.DataFrame(data[datacolumn])
self.data.columns=['数据']
elif isinstance(data, pd.core.series.Series):
self.data = pd.DataFrame(data, columns=['数据'])
else:
self.data = pd.DataFrame(data, columns=['数据'])
self.forecast_list = self.data.copy()
if datacolumn:
self.datacolumn = datacolumn
else:
self.datacolumn = None
#save arg:
# data DataFrame 数据
# forecast_list DataFrame 预测序列
# datacolumn string 数据的含义
按照级比校验的步骤进行,最终返回是否成功的bool类型值
def level_check(self):
# 数据级比校验
n = len(self.data)
lambda_k = np.zeros(n-1)
for i in range(n-1):
lambda_k[i] = self.data.ix[i]["数据"]/self.data.ix[i+1]["数据"]
if lambda_k[i] < np.exp(-2/(n+1)) or lambda_k[i] > np.exp(2/(n+2)):
flag = False
else:
flag = True
self.lambda_k = lambda_k
if not flag:
print("级比校验失败,请对X(0)做平移变换")
return False
else:
print("级比校验成功,请继续")
return True
#save arg:
# lambda_k 1-d list
按照GM(1,1)的步骤进行一次预测并增长预测序列(forecast_list)
传入的参数forecast为使用forecast_list末尾数据的数量,因为灰色预测为短期预测,过多的数据反而会导致数据精准度变差
def GM_11_build_model(self, forecast=5):
if forecast > len(self.data):
raise Exception('您的数据行不够')
X_0 = np.array(self.forecast_list['数据'].tail(forecast))
# 1-AGO
X_1 = np.zeros(X_0.shape)
for i in range(X_0.shape[0]):
X_1[i] = np.sum(X_0[0:i+1])
# 紧邻均值生成序列
Z_1 = np.zeros(X_1.shape[0]-1)
for i in range(1, X_1.shape[0]):
Z_1[i-1] = -0.5*(X_1[i]+X_1[i-1])
B = np.append(np.array(np.mat(Z_1).T), np.ones(Z_1.shape).reshape((Z_1.shape[0], 1)), axis=1)
Yn = X_0[1:].reshape((X_0[1:].shape[0], 1))
B = np.mat(B)
Yn = np.mat(Yn)
a_ = (B.T*B)**-1 * B.T * Yn
a, b = np.array(a_.T)[0]
X_ = np.zeros(X_0.shape[0])
def f(k):
return (X_0[0]-b/a)*(1-np.exp(a))*np.exp(-a*(k))
self.forecast_list.loc[len(self.forecast_list)] = f(X_.shape[0])
预测函数只要调用GM_11_build_model就可以,传入的参数time为向后预测的次数,forecast_data_len为每次预测所用末尾数据的条目数
def forecast(self, time=5, forecast_data_len=5):
for i in range(time):
self.GM_11_build_model(forecast=forecast_data_len)
打印当前预测序列
def log(self):
res = self.forecast_list.copy()
if self.datacolumn:
res.columns = [self.datacolumn]
return res
初始化序列
def reset(self):
self.forecast_list = self.data.copy()
作图
def plot(self):
self.forecast_list.plot()
if self.datacolumn:
plt.ylabel(self.datacolumn)
plt.legend([self.datacolumn])
首先读入数据,最近11年的电影票房
f = open("电影票房.csv", encoding="utf8")
df = pd.read_csv(f)
df.tail()
11条数据
构建灰色预测对象,进行10年预测输出结果并作图
gf = GrayForecast(df, '票房')
gf.forecast(10)
gf.log()
原来的11条数据+10条预测结果
gf.plot()
全体数据作图
我们看数据的后面几条,高达数千万,或许10年前我们也想不到现在的电影票房是曾经原来的20倍。
这么快的增长已经接近指数增长了,然而它很可能就像人口一样,它并非是指数增长,而是没有达到增速减少的阈值罢了,用灰色预测很难看到如此长远的情况,或许可以将数据改为用sigmoid函数拟合,或许能达到更加准确的结果。
sigmoid函数
作者:crossous
链接:https://www.jianshu.com/p/a35ba96d852b
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
https://blog.csdn.net/qq547276542/article/details/77865341/