- 2-93 基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真
'Matlab学习与应用
matlab工程应用matlab无人机开发语言毫米波高度计雷达仿真频率调制连续波FMCW
基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真,不考虑环境杂波和收发信号隔离泄漏。通过考虑雷达天线、波束形成、信号传播、回波接收等环节影响。建立FMCW毫米波雷达系统的数学模型,评估无人机在不同高度下的高度测量性能。程序已调通,可直接运行。下载源程序请点链接:2-93基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真
- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- 2021年汽车传感器行业研究报告
行研君.嵇睿麒
自动驾驶其他
核心观点:自动驾驶加速渗透,推动汽车传感器市场的高速增长。传感器是自动驾驶的关键,当前主流自动驾驶传感器主要包括毫米波雷达、车载摄像头以及超声波雷达。2020年国内L2级别自动驾驶的渗透率已近15%。车企相继推出具备L3功能的自动驾驶车型。随着自动驾驶等级的提高,对传感器的数量和质量也提出了更高的要求,L2级自动驾驶传感器数量约为6个,L3约为13个,未来L5要达到30个以上,相应带动汽车传感器市
- 智能汽车「利好」数据服务,特斯拉/英伟达/大众都在布局
高工智能汽车
自动驾驶
硬件预埋,正在推动智能驾驶行业进入数据驱动迭代周期。今年,英伟达在Orin进入规模上量阶段的同时,推出了DriveMap,基于精确测绘数据与匿名众包数据相结合,提供厘米级的定位精度。后者,由搭载英伟达Hyperion架构的车辆提供数据众包,包括来自摄像头、激光雷达和毫米波雷达的数据。所有这些数据,从车端不断上传到云端。然后,加载到英伟达的Omniverse平台,后者是一个为虚拟仿真和实时物理精确模
- 智能汽车行业产业研究报告:毫米波雷达优势明显,核心壁垒是芯片、天线阵列、波形设计
人工智能学派
汽车
今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:毫米波雷达优势明显,核心壁垒是芯片、天线阵列、波形设计》。(报告出品方:国泰君安证券)报告共计:67页毫米波雷达被广泛的应用在车载感知识别中毫米波波长短、频段宽,比较容易实现窄波束,雷达分辨率高,不易受干扰。波长介于1~10mm的电磁波,频率大致范围是30GHZ~300GH2。毫米波雷达是测量被测物体相对距离、相对速度、方位的高精度
- 智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助
人工智能学派
自动驾驶人工智能机器学习
今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助》。(报告出品方:开源证券)报告共计:43页视觉感知最佳辅助——4D成像毫米波雷达感知是自动驾驶的首要环节,高性能传感器必不可少感知环节负责对侦测、识别、跟踪目标,是自动驾驶实现的第一步。自动驾驶的实现,首先要能够准确理解驾驶环境信息,需要对交通主体、交通信号、环境物体等信息进行有效捕捉,根据实时
- 华为问界M9:全方位自动驾驶技术解决方案
华西建筑关联专业公司 华鲲智慧
自动驾驶人工智能机器学习
华为问界M9的自动驾驶技术采用了多种方法来提高驾驶的便利性和安全性。以下是一些关键技术:智能感知系统:问界M9配备了先进的传感器,包括高清摄像头、毫米波雷达、超声波雷达等,这些传感器可以实时监测车辆周围的环境,并自动识别行人、车辆、交通信号等,为自动驾驶提供更加精准的数据支持。这种全场景的智能感知能够实现全天候、全路况的智能感知,提高驾驶的便利性和安全性。自动驾驶辅助系统:华为自主研发的Drive
- 4D毫米波雷达
sangba2019
#毫米波雷达自动驾驶fpga开发毫米波雷达4D毫米波雷达
主流雷达供应商的4D成像雷达方案梳理csdn链接德国大陆集团(以下简称大陆)深耕车载毫米波雷达数十年,自2016年推出划时代的ARS4XX77GHz毫米波前向雷达和BSD3XX24GHz毫米波盲区检测雷达,目前前向雷达和角雷达产品已更迭至第五代,客户包括了戴姆勒、宝马、大众、丰田等知名主机厂。2020年大陆推出了4D成像雷达ARS540,采用4颗射频芯片级联的方式,实现12发射通道,16接收通道高
- 2.1.3 毫米波雷达
人工智能
毫米波雷达更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git毫米波雷达(RADAR),和激光雷达的原理类似,是工作在毫米波波段(millimeterwave)探测的雷达。通常毫米波是指30~300GHz频域(波长为1~10mm)的。毫米波的波长介于微波和厘米波之间,因此毫米波雷达兼有微波雷达和光电雷达的一些优点。同厘米波导
- 2.1.2 激光雷达
人工智能
激光雷达更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git激光雷达是自动驾驶领域非常依赖的传感器,越来越多的自动驾驶公司看好激光雷达的应用前景。激光雷达是实现更高级别自动驾驶(L3级别以上),以及更高安全性的良好途径,相比于毫米波雷达,激光雷达的分辨率更高、稳定性更好、三维数据也更可靠。一、原理激光雷达(LightDete
- 坐标变换(2)—不同坐标系下的变换
lewif5231
如下图所示,在自动驾驶车辆上会存在大量冗余的传感器,例如轮速传感器、激光雷达,毫米波雷达,摄像头,超声波雷达,GPS,IMU等。不同传感器对同一物体的测量原始结果都是在自身坐标下,所以首先我们需要对多传感器就行标定(即获得不同坐标系之间的变换关系,多传感器的标定是个非常复杂且困难的问题,这里先不介绍),将所有传感器的输出统一到一个坐标系下。图1.自动驾驶车辆上的多传感器本文主要介绍不同坐标系之间变
- TI 毫米波雷达开发系列之mmWave Studio 和 Visuiallizer 的异同点&雷达影响因素分析
雷达爆破手
毫米波雷达mmWaveRadar毫米波雷达AWR/IWR系列
TI毫米波雷达开发之mmWaveStudio和Visuiallizer的异同点引入整个雷达系统研究的目标分析影响这个目标的因素硬件影响因素——雷达系统的硬件结构(主要是雷达收发机)AWR1642芯片硬件系统组成MSS和DSS概述MSS和DSS分工BSS的分工AWR1642组成及分工总结雷达收发机对雷达检测效果的影响影响雷达测距效果的因素测速及其他指标的影响三种调参方式的对比软件影响因素——信号处理
- TI毫米波雷达开发——High Accuracy Demo 串口数据接收及TLV协议解析 matlab 源码
雷达爆破手
matlab开发语言
TI毫米波雷达开发——串口数据接收及TLV协议解析matlab源码前置基础源代码功能说明功能演示视频文件结构01.bin/02.binParseData.mread_file_and_plot_object_location.mread_serial_port_and_plot_object_location.m函数解析configureSport(comportSnum)readUartCall
- 电动汽车雷达技术概述 —— FMCW干扰问题
初心不忘产学研
自动驾驶汽车嵌入式硬件电动汽车传感器雷达FMCW毫米波雷达雷达技术
一、电动汽车上有多少种传感器?智能电动汽车(包括自动驾驶汽车)集成了大量的传感器来实现高级驾驶辅助系统(ADAS)、自动驾驶功能以及车辆状态监测等功能。以下是一份相对全面的智能电动汽车中可能使用到的传感器列表:环境感知传感器:激光雷达(LiDAR):提供高精度三维点云数据,用于构建周围环境模型。毫米波雷达(MMWRadar):长距离和短距离雷达,检测与前方、后方及侧面物体的距离、速度和角度信息。视
- 毫米波雷达在汽车领域的原理、优势和未来趋势
马上到我碗里来
自动驾驶毫米波雷达无人驾驶
1毫米波雷达的原理汽车引入毫米波雷达最初主要是为了实现盲点监测和定距巡航。毫米波实质上是电磁波,其频段位于无线电和可见光、红外线之间,频率范围为10GHz-200GHz。工作原理类似一般雷达,通过发射无线电波并接收回波,利用障碍物反射波的时间差确定障碍物距离,通过反射波的频率偏移确定相对速度。2毫米波雷达未被抛弃的原因2.1天气原因激光雷达在极端天气下性能受限,而毫米波雷达能够穿透雾、雨、雪等,适
- 2023-02-24
醉爱琳儿
A股2月24日纪要大盘上涨的空间太小。静待靴子落地吧。阅读蕴藏着无尽可能,有益于明理、增信、崇德、力行,让人生绽放光彩。朋友们,早上好,今天是2月24日星期五,周四大小指数冲高回落,上证指数以绿盘报收,创业板指数小幅收涨。两市合计成交8079亿元,较上日略微有些增加。盘面上盘面上看,光伏、汽车、券商、农业、煤炭等板块走强,银行、地产、有色等板块上扬;软件、酿酒、医药等板块下挫;毫米波雷达、一体压铸
- 自动驾驶中的传感器
huangyi_200502
自动驾驶
目录摄像头激光雷达毫米波雷达惯性传感器(IMU)超声波雷达声明摄像头对比Radar、Lidar、Sonar来讲,Camera最接近人眼识别原理,在自动驾驶传感器中担任重要角色。摄像头可以拥有较广的视场角、较大的分辨率,还可以提供颜色和纹理等信息。这些信息对于实现自动驾驶功能是存在很大帮助的。摄像头是将光学组件获得的光信号,投射到图像传感器上,完成由光信号到电信号的转换,然后再转换为数字图像信号,最
- 自动驾驶模拟如此“吃”算力,你的工作站扛得住吗?
戴尔科技
自动驾驶人工智能机器学习
今年的亚运会让杭州“火出了圈”,除了各种高度自动化的场馆设施之外,无人物流配送车和自动驾驶公交车也开始正式运营,给市政交通增添了一分科幻色彩。杭州的自动驾驶公交车配备了3个激光雷达、4个毫米波雷达和5个摄像头,300米范围内的障碍物都能被识别和准确避开,精度达到厘米级。自动驾驶巴士通过在沿线全路段部署高清相机、雷达等智能感知设备,实现路网全息感知,并依托车路协同技术,实现了车与路的智慧互联,有效提
- 基于Ti-AWR2944雷达开发板的DDM发射与处理实践
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分经验分享车载毫米波雷达FMCW雷达DDMA发射模式Ti-AWR2944
说明我在之前的博文中有说过如下观点:MIMO体制下,有两个核心的问题需要解决:一是天线如何排布;二是天线如何发射。天线的排布问题主要涉及到测角,它与射频面板尺寸要求、单天线尺寸、最大无模糊测角范围、角度分辨率以及测角算法等有关,关于角度测量我之前有过一篇博文:车载毫米波雷达DOA估计综述-CSDN博客。天线的发射问题主要是考虑到正交性:如何在后端将各个收发通道给分离出来,现阶段有TDM、BPM、F
- PMCW体制雷达系列文章(2) - PMCW雷达与CDM
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分PMCW雷达经验分享自动驾驶
说明多发多收(MIMO)体制下关于天线阵列有两个核心的问题:一是天线阵列怎么排布;二是这么多发射通道如何发射。这两点不管对于FMCW雷达还是PMCW雷达都同样适用。关于雷达的发射问题,我之前写过一篇博文:车载毫米波雷达MIMO阵列的天线发射问题-CSDN博客,那篇博文及其参考文献其实已经把雷达的发射问题(现有的发射模式)基本囊括了。PMCW体制下我们一般基于CDM来实现多个发射通道的同时发射。本文
- 基于Ti-AWR2944雷达开发板的BPM发射与处理实践
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分经验分享BPM发射模式Ti-AWR2944车载毫米波雷达
说明我在之前的博文中有说过如下观点:MIMO体制下,有两个核心的问题需要解决:一是天线如何排布;二是天线如何发射。天线的排布问题主要涉及到测角,它与射频面板尺寸要求、单天线尺寸、最大无模糊测角范围、角度分辨率以及测角算法等有关,关于角度测量我之前有过一篇博文:车载毫米波雷达DOA估计综述-CSDN博客。天线的发射问题主要是考虑到正交性:如何在后端将各个收发通道给分离出来,现阶段有TDM、BPM、F
- 毫米波雷达的系统设计细节(2) - 关于目标RCS的问题
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分自动驾驶经验分享车载系统算法
说明目标的RCS是目标很重要的一个特征。从雷达方程来看,目标的RCS值直接影响其所反射的电磁波能量,并进而决定雷达所能探测的该目标的最远距离。从后端的数据处理来看,如果我们可以获取目标准确的RCS值,可以辅助我们做目标识别与分类。本博文探讨基于毫米波雷达的目标RCS估计问题,通过模型理解与仿真、设计对比实验等方法尽可能详尽地阐述目标RCS与毫米波雷达测量之间的联系。本博文会随着经验的积累和理解的加
- 移动机器人平台常用传感器简介
td092
机器人
在移动机器人上常用的传感器包括激光雷达、毫米波雷达、相机、IMU、编码器等,其中激光雷达、超声波雷达和相机是用来测量外部环境的,IMU、编码器测量的是AGV自身位姿。下面分别描述它们的原理、适用场景及缺陷。激光雷达按照机械结构可以分为机械雷达和固态雷达。机械激光雷达通过机械旋转机构调整激光发射角度,产品较为成熟。固态雷达可分为OPA、MEMS、Flash等类型,内部没有旋转部件,体积较机械雷达小。
- 4D毫米波雷达——ADCNet 原始雷达数据 目标检测与可行驶区域分割
一颗小树x
4D毫米波雷达4D毫米波雷达ADCNet原始雷达数据目标检测可行驶区域分割
前言本文介绍使用4D毫米波雷达,基于原始雷达数据,实现目标检测与可行驶区域分割,它是来自2023-12的论文。会讲解论文整体思路、输入分析、模型框架、设计理念、损失函数等,还有结合代码进行分析。论文地址:ADCNet:LearningfromRawRadarDataviaDistillation1、模型框架ADCNet只使用雷达信息,实现车辆检测和可行驶区域分割。输入:原始雷达数据;即ADC数据,
- 4D毫米波雷达分类和工程实现
奔袭的算法工程师
感知后处理分类数据挖掘人工智能自动驾驶目标检测机器学习
4D毫米波目标检测信息丰富,可获得目标3维位置信息、径向速度vr和rcs等,能够对目标准确分类。4D毫米波和激光做好时空同步,可以用激光目标给4D毫米波做标注,提升标注效率。1激光用做4D毫米波分类真值128线激光推理的结果作为4D毫米波雷达的真值,但不同类别的尺寸存在重叠,存在分类错误可能。1.1小车,类别0,点数0~70,长度2m~7m,宽度1.6m~2.7m1.2大车,类别1,点数0~120
- 使用毫米波雷达传感器的功能安全兼容系统设计指南2(TI文档)
奔袭的算法工程师
感知后处理安全人工智能自动驾驶目标检测算法
2.3步骤3:平台选择平台选择是设计生命周期中最关键的步骤之一。一旦从第二步完成了一个成熟的系统框图,重要的任务就是根据性能需求选择系统模块/子系统。TI广泛的毫米波雷达传感器产品组合可以帮助实现许多性能要求,如远程或中程、角度分辨率、距离分辨率、速度分辨率等。为了开发符合FuSa标准的毫米波雷达传感器系统,TI毫米波雷达传感器成为客户的首选,因为它们具有广泛应用的通用性和必要的附属品的可用性。T
- 使用毫米波雷达传感器的功能安全兼容系统设计指南1(TI文档)
奔袭的算法工程师
感知后处理安全人工智能自动驾驶目标检测汽车
摘要功能安全标准规定了在系统中实施安全的要求,并有助于概括该系统要达到的安全目标。包括功能安全的系统设计不仅要降低操作不当的风险,还要检测故障并将其影响降到最低。随着汽车和工业系统的自主性越来越强,严格的功能安全要求被强制执行,以最大限度地减少系统和随机故障导致的设备故障和人员伤害。ISO26262和IEC61508等综合安全标准分别概述和定义了汽车和工业领域各种应用所需的过程、工件和合规性。安全
- 车辆网行业术语合集
Ad大成
最近在研究专利的问题,阅读了许多专利,发现好多的术语都不知道,特在此记录一下,方便以后查阅和个人记忆。ADAS高级驾驶辅助系统(AdvancedDrivingAssistanceSystem)是利用安装在车上的各式各样传感器(毫米波雷达、激光雷达、单\双目摄像头以及卫星导航),在汽车行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航地图数据,进行系统的运算与
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 毫米波雷达半精度浮点存储格式分析
WPG大大通
单片机大大通芯片烧录嵌入式硬件stm32
作者:英飞凌汽车电子生态圈英飞凌技术专家钱伟喆雷达信号处理需要使用大量内存进行中间结果和最终结果的保存,而内存大小直接影响处理芯片的成本。选择合适的数据存储格式,既保留较高的信号分辨率和动态范围,又不占用太大的存储空间是相当重要的。本文介绍了TC3xx单片机雷达信号处理单元SPU支持的半精度浮点格式,将其和32bit整型数格式进行比较,分析了两者的动态范围及实际处理误差,发现半精度浮点格式是“性价
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla