《数据挖掘》平时实验作业,只提供代码和数据。
代码:
package com.outsider.kmeans;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class Kmeans {
public void run(int k ,double[][] data, int maxIter) {
// 0 随机选出k个样本作为初始中心
Set indices = new HashSet<>(k);
while(indices.size() != k) {
int index = (int) (Math.random()*(data.length -1));
indices.add(index);
}
double[][] center = new double[k][];
int c = 0;
for(int index : indices) {
center[c] = data[index];
c++;
}
//1迭代
//1.1 将样本分类到距离最近的中心
//1.2 修正中心为当前簇的平均值
//1.3 若达到最大迭代次数或者中心和上次相比没有变化,则结束
int i = 0;
while(true) {
Object[] rs = classify(center, data);
int[] labels = (int[]) rs[0];
int[] count = (int[]) rs[1];
double[][] newCenter = (double[][]) rs[2];
//labels,count,newCenter
//比较新的中心是否和旧的一样
boolean convergent = true;
for(int j = 0; j < center.length; j++) {
for(int m = 0; m < center.length; m++) {
if(center[j][m] != newCenter[j][m])
convergent = false;
}
}
i++;
System.out.println("iter "+i);
if(convergent) {
printResult(count, newCenter, data.length);
break;
}
center = newCenter;
if(i >= maxIter) {
printResult(count, newCenter, data.length);
break;
}
}
}
public void printResult(int[] count, double[][] center, int dataLen) {
for(int i = 0; i < center.length; i++) {
System.out.println("class "+i+":"+(count[i] *1.0 / dataLen) + " " +Arrays.toString(center[i]));
}
}
/**
* 根据当前中心划分类别
* 并返回新的中心
* @param center
* @param data
* @return object数组,只包含3个元素,第一个数据的类别标签,第2个个类别的个数,第3个新的簇中心,
*/
public Object[] classify(double[][] center, double[][] data) {
int[] labels = new int[data.length];
int[] count = new int[center.length];
for(int i = 0; i < data.length; i++) {
double minDist =distance(center[0], data[i]);
for(int j = 1; j < center.length; j++) {
double dist = distance(center[j], data[i]);
if(dist < minDist) {
minDist = dist;
labels[i] = j;
}
}
}
//计算新的中心
double[][] newCenter = new double[center.length][center[0].length];
for(int i = 0; i < data.length; i++) {
count[labels[i]]++;
for(int j = 0; j < data[0].length; j++) {
newCenter[labels[i]][j] += data[i][j];
}
}
for(int i = 0; i < newCenter.length; i++) {
for(int j = 0; j < newCenter[0].length; j++) {
newCenter[i][j] = newCenter[i][j] / count[i];
}
}
return new Object[] {labels,count,newCenter};
}
/**
* 计算向量之间的欧式距离
* @param v1
* @param v2
* @return
*/
public double distance(double[] v1, double[] v2) {
double sum = 0;
for(int i = 0; i < v1.length; i++) {
sum += Math.pow(v1[i]-v2[i], 2);
}
return Math.sqrt(sum);
}
public static double[][] loadIrisData(){
double [][] data = new double[150][];
BufferedReader reader2 = null;
try {
FileReader reader = new FileReader("./data/iris.arff");
reader2 = new BufferedReader(reader);
String line = null;
int count = 0;
while((line = reader2.readLine()) != null) {
String[] strs = line.split(",");
double[] sample = new double[4];
for(int i = 0; i < 4; i++) {
sample[i] = Double.parseDouble(strs[i]);
}
data[count++] = sample;
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
reader2.close();
} catch (IOException e) {
e.printStackTrace();
}
}
return data;
}
public static void main(String[] args) {
Kmeans kmeans = new Kmeans();
double[][] data = loadIrisData();
kmeans.run(3, data, Integer.MAX_VALUE);
//double[][] data2 = new double[][] {{1,2,1},{2,1,2},{3,3,3},{4,4,4}};
//kmeans.run(2, data2, Integer.MAX_VALUE);
}
}
数据是iris:
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica