- 统计领域英语专业词汇补充
月亮月亮要去太阳
算法其他
应统考研复试:多元统计、回归分析、时间序列三大领域专业词汇翻译以下是多元统计、回归分析和时间序列三大统计领域的常见专业词汇的英汉互译,按类别整理:多元统计(MultivariateStatistics)英文术语中文术语MultivariateAnalysis多元分析PrincipalComponentAnalysis(PCA)主成分分析FactorAnalysis因子分析ClusterAnalys
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- Math.NET Numerics 库怎么装
9677
.net
你提到的缺少的库是Math.NETNumerics。关于Math.NETNumericsMath.NETNumerics是一个用于.NET平台的开源数学库,提供了以下功能:线性代数(矩阵运算、求解线性方程组等)。数值计算(积分、微分、优化等)。统计和概率分布。回归分析(包括多元线性回归)。它是C#中进行科学计算和数据分析的常用工具。安装Math.NETNumerics你可以通过NuGet包管理器安
- 深度学习 -- 逻辑回归 PyTorch实现逻辑回归
冲鸭嘟嘟可
深度学习逻辑回归python人工智能
前言线性回归解决的是回归问题,而逻辑回归解决的是分类问题,这两种问题的区别是前者的目标属性是连续的数值类型,而后者的目标属性是离散的标称类型。可以将逻辑回归视为神经网络的一个神经元,因此学习逻辑回归能帮助理解神经网络的工作原理。什么是逻辑回归?逻辑回归是一种广义的线性回归分析模型,是监督学习的一种重要方法,主要用于二分类问题,但也可以用于多分类问题。逻辑回归的主要思想是,对于一个二分类问题,先根据
- JS宏进阶:浅谈曲线回归
jackispy
JS宏进阶回归数据挖掘人工智能javascript
曲线回归是一种统计学方法,用于研究两个或多个变量之间的非线性关系,并找到最能拟合数据点的曲线函数形式。与线性回归不同,曲线回归适用于描述那些不是直线性的变量关系。通过曲线回归,可以建立变量之间的非线性数学模型,用于预测和解释各种实际现象。一、基本概念定义:曲线回归是指对于非线性关系的变量进行回归分析的方法。曲线回归方程一般是以自变量的多项式或其他非线性函数形式表达因变量。目的:曲线回归的主要目的是
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- r语言 面板数据回归_R语言 之回归分析
你的麦克疯
r语言面板数据回归
回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,下列表格向我们展示了回归的不同类型以及其用途。本章为R语言回归分析之上部分,主要向读者们展示如何运用R语言完成ols(普通最小二乘)回归:简单线性回归、多项式回归、多元线性回归的语言编程示例,以及检验回归分析中统计假设的方法。回归类型用途简单线性用一个量化的解释变量来预测一
- 【R语言数据分析】基于R语言对中、美两国GDP分析(R语言大作业)
m0_73866147
数据分析大数据r语言
目录一、研究意义二、数据来源三、读取数据读取数据代码运行结果截图四、数据分析绘制箱线图建立箱线图代码运行结果截图五、建立回归模型建立回归模型代码运行结果截图有关于相关系数的计算与检验六、回归分析确定回归方程七、预测中国和美国未来的GDP值、预测中国的GDP赶超美国的时间数据可视化八、总结一、研究意义GDP作为衡量一个国家经济发展的重要指标,被赋予了非常重要的意义,深刻反映着当下经济发展的现状。中美
- 生态碳汇涡度相关监测与通量数据分析
岁月如歌,青春不败
生态遥感数据分析碳汇生态科学涡度通量大涡模拟MATLAB
1、以涡度通量塔的高频观测数据,基于MATLAB:2、涡度通量观测基本概况:观测技术方法、数据获取与预处理等3、涡度通量数据质量控制:通量数据异常值识别与剔除等4、涡度通量数据缺失插补:结合气象数据进行通量数据缺失插补等5、涡度通量数据组分拆分:计算生态系统呼吸和总初级生产力等6、涡度通量数据可视化分析:绘制不同通量组分数据的时间变化等7、涡度通量与气象数据相关性:时间序列相关分析、回归分析等8、
- 【GRR】重复性和再现性
Stongtang
python
一、序章通常通过加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化。那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征
- RIME-CNN-SVM故障诊断
九亿AI算法优化工作室&
cnn支持向量机人工智能matlabpython
构建一个高效、准确的基于卷积神经网络(CNN)的电力系统故障识别与分类仿真系统,实现对电力系统故障的精准识别与分类。在这一模型中,CNN被用来执行故障数据的特征提取与抽象化处理,随后,这些经过抽象的特征会被传递给SVM模型,由SVM进一步执行分类与回归分析的任务,从而实现对故障类型的精确判定或故障严重程度的准确评估。为了进一步提升模型的泛化能力与预测精度,引入了雾凇算法来精细调整CNN与SVM的各
- MINITAB中文教程:统计分析与质量管理
聚合收藏
本文还有配套的精品资源,点击获取简介:MINITAB作为一款强大的统计分析工具,在质量控制、数据挖掘和实验设计等领域广受欢迎。该教程旨在为初学者提供一个友好的起点,通过详细的界面介绍、数据管理、基本统计分析、图形制作、质量控制、回归分析、过程能力分析、假设检验、多元统计和质量改进工具等内容的学习,使用户能够通过实例和练习,提高数据分析和质量管理的实际操作技能。教程采用PPT格式,以直观高效的方式呈
- SPSS多元回归得到的VIF值要怎么看每个变量都有一个VIF值怎么判断多重共线性
xiamu_CDA
python
SPSS多元回归中的VIF值解读与多重共线性的判断当你在使用SPSS进行多元线性回归分析时,面对复杂的统计结果,可能会遇到一个问题:如何通过查看每一个解释变量的方差膨胀因子(VarianceInflationFactor,VIF)来判断是否存在多重共线性?这不仅是理论上的探讨,更是实际数据处理过程中不可或缺的一环。今天,我们就一起来揭开VIF值背后的秘密。什么是VIF值?方差膨胀因子(VIF)是用
- R语言机器学习与临床预测模型77--机器学习预测常用R语言包
武昌库里写JAVA
面试题汇总与解析springlog4jjava开发语言算法
R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01预测模型常用R包常见回归分析包:rpart包含有分类回归树的方法;earth包可以实现多元自适应样条回归;mgev包含广义加性模型回归;Rweka包中的MSP函数可用于回归。pls包中的plsr函数实现偏最小二乘和主成分回归。stats包中的ppr函数实现投影寻踪分析,同时包括线性回归的方
- 使用线性回归模型逼近目标模型 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习线性回归pytorch
前一篇文章,计算图ComputeGraph和自动求导Autograd|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started使用线性回归模型逼近目标模型什么是回归什么是线性回归使用PyTorch实现线性回归模型代码执行结果什么是回归在统计学中,回归分析(regressionanalysis)
- 深入详解人工智能机器学习算法——逻辑回归算法
猿享天开
人工智能基础知识学习人工智能机器学习算法逻辑回归
引言逻辑回归(LogisticRegression)是机器学习中一种基本而重要的分类算法。在这篇文章中,我们将深入解析逻辑回归的各个方面,包括其基础知识、数学原理、实现方法、以及应用场景。我们还将通过具体的代码示例和应用案例,帮助您全面理解逻辑回归算法。第一部分:逻辑回归的基础知识1.1什么是逻辑回归?逻辑回归是一种用于解决二分类问题的回归分析方法。尽管名字中带有“回归”,逻辑回归的目标是将预测结
- 深度学习实战一:线性回归(基于Pytorch,含数据和详细注释)
若北辰
Python深度学习深度学习线性回归pytorch
线性回归1、回归的概念2、回归的分类3、线性回归4、代码实现补充说明1、回归的概念回归的本来意思是,无论父母的身高多高或多矮,小孩的身高总是趋向于回到均值附近,也就是回归趋向均值!,这就是回归分析的本质2、回归的分类线性回归(又分为一元线性回归和多元线性回归)广义线性回归(又分为逻辑回归和对数回归)非线性回归3、线性回归线性回归是深度学习中最基础、最简单的模型。虽然简单,但是跟大多数监督学习算法的
- scikit-learn实现SVM
PeterClerk
支持向量机scikit-learn算法
支持向量机(SVM)是一种监督学习算法,主要用于分类和回归分析。其基本原理是在数据集中找到一个最优的超平面,使得不同类别的数据被最大间隔分开。最大间隔超平面:SVM的目标是找到能够最大化训练样本间隔的超平面。间隔被定义为到最近训练样本点的距离,这些点被称为支持向量。这种策略的优势在于它提供了一种防止模型过拟合的方法,从而提高了泛化能力。核技巧:在实际应用中,许多数据集不是线性可分的,这就需要使用核
- 数学与经济学:数学模型在经济预测中的应用
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数学与经济学:数学模型在经济预测中的应用关键词:数学模型、经济学、经济预测、数据分析、算法、神经网络、回归分析、供需模型、消费行为模型、投资决策模型、经济增长模型。摘要:本篇文章深入探讨了数学模型在经济预测中的应用。文章首先介绍了数学模型的基本概念与应用,然后详细讨论了经济学中的常见数学模型,如供需模型、消费行为模型和投资决策模型。接着,文章通过实际案例展示了数学模型在经济预测中的应用,并探讨了其
- PyTorch数据建模
kaka_R-Py
大数据可视化pytorch人工智能python
回归分析importtorchimportnumpyasnpimportpandasaspdfromtorch.utils.dataimportDataLoader,TensorDatasetimporttimestrat=time.perf_counter()
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- python3调用arcpy地理加权回归_分析地理加权回归分析结果的操作方法
weixin_39545269
1从地理加权回归(GWR)工具生成的输出包括以下内容:输出要素类可选系数栅格表面整体模型结果的消息窗口报告显示模型变量和诊断结果的辅助表预测输出要素类2下文中将使用一系列运行GWR和解释GWR结果的步骤对以上每项输出进行说明。通常将以普通最小二乘法(OLS)开始回归分析。有关详细信息,请参阅回归分析基础知识和解释OLS回归结果。回归分析的一种常用方法是在移动到GWR之前识别可能的最佳OLS模型。此
- 2025年美赛数学建模 Problem C: Models for Olympic Medal Tables 问题 C:奥运奖牌榜模型 详细解析和代码(持续更新中,2025美赛)
2025年数学建模美赛
2025年美赛MCM/ICM数学建模开发语言2025年数学建模美赛2025美赛C题奥运奖牌榜模型
目录Python代码MATLAB代码2.模型框架2.1回归分析模型2.2集成学习方法2.3时间序列预测2.4模型不确定性估计3.数据处理与模型训练4.预测2028年奥运奖牌5.预测区间和不确定性6.哪些国家可能提高或下降?7.尚未获得奖牌的国家的预测8.奥运项目与奖牌数的关系2.教练与国家奖牌数的关联2.1定义“伟大教练”效应2.2数据分析方法2.3分析结果3.选择三个国家并确定应投资的运动项目3
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 机器算法之逻辑回归(Logistic Regression)详解
HappyAcmen
算法合集算法逻辑回归机器学习
一、什么是逻辑回归?逻辑回归并不是传统意义上的回归分析,而是一种用于处理二分类问题的线性模型。它通过计算样本属于某一类别的概率来进行分类,尽管名字中有“回归”二字,但它实际上是一种分类算法。简单来说,逻辑回归回答的是“这件事发生的可能性有多大”。二、逻辑回归的基本原理在讲原理之前,我们先来了解一下逻辑回归的数学基础。逻辑回归的核心是一个Logistic函数(或称为Sigmoid函数),它的公式如下
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- 数据分析-18-时间序列分析的季节性检验
皮皮冰燃
数据分析数据分析
1什么是时间序列时间序列是一组按时间顺序排列的数据点的集合,通常以固定的时间间隔进行观测。这些数据点可以是按小时、天、月甚至年进行采样的。时间序列在许多领域中都有广泛应用,例如金融、经济学、气象学和工程等。时间序列的分析可以帮助我们理解和预测未来的趋势和模式,以及了解数据的周期性、趋势、季节性等特征。常用的时间序列分析方法包括平滑法、回归分析、ARIMA模型、指数平滑法和机器学习方法等。1.1时间
- 2021-10-06
多去看看
下载完数据后,一用do.call(dplyr::bind_rows,diagnose)然后去clinical$demographic两者用patient_id合并,可以得到数据现在做单因素分析,然后lasso回归分析已经得到数据表,单因素分析需要什么?似乎需要的数据不多,看看怎么弄做单因素分析:基因表达值,生存状态:死亡或者存活,生存时间那剩下的那些是个什么鬼生存分析,生存时间,生存状态生存分析模
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen