主要参考了这篇博客BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结,另外添加了AttentiveNorm。
1、Batch Normalization:https://arxiv.org/pdf/1502.03167.pdf
2、Layer Normalizaiton:https://arxiv.org/pdf/1607.06450v1.pdf
3、Instance Normalization:https://arxiv.org/pdf/1607.08022.pdf
4、Group Normalization:https://arxiv.org/pdf/1803.08494.pdf
5、Switchable Normalization:https://arxiv.org/pdf/1806.10779.pdf
6、AttentiveNorm:https://arxiv.org/pdf/1908.01259.pdf
归一化层,目前主要有这几个方法,Batch Normalization(2015年)、Layer Normalization(2016年)、Instance Normalization(2017年)、Group Normalization(2018年)、Switchable Normalization(2018年),Attentive Normalization(2019年);
将输入的图像shape记为[N, C, H, W],这几个方法主要的区别就是在,
Affine Transformation
。首先,在进行训练之前,一般要对数据做归一化,使其分布一致,但是在深度神经网络训练过程中,通常以送入网络的每一个batch训练,这样每个batch具有不同的分布;此外,为了解决internal covarivate shift问题,这个问题定义是随着batch normalizaiton这篇论文提出的,在训练过程中,数据分布会发生变化,对下一层网络的学习带来困难。
所以batch normalization就是强行将数据拉回到均值为0,方差为1的正太分布上,这样不仅数据分布一致,而且避免发生梯度消失。
此外,internal corvariate shift和covariate shift是两回事,前者是网络内部,后者是针对输入数据,比如我们在训练数据前做归一化等预处理操作。
算法过程:
加入缩放平移变量的原因是:保证每一次数据经过归一化后还保留原有学习来的特征,同时又能完成归一化操作,加速训练。 这两个参数是用来学习的参数。
实现:
import numpy as np
def Batchnorm(x, gamma, beta, bn_param):
# x_shape:[B, C, H, W]
running_mean = bn_param['running_mean']
running_var = bn_param['running_var']
results = 0.
eps = 1e-5
x_mean = np.mean(x, axis=(0, 2, 3), keepdims=True)
x_var = np.var(x, axis=(0, 2, 3), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
# 因为在测试时是单个图片测试,这里保留训练时的均值和方差,用在后面测试时用
running_mean = momentum * running_mean + (1 - momentum) * x_mean
running_var = momentum * running_var + (1 - momentum) * x_var
bn_param['running_mean'] = running_mean
bn_param['running_var'] = running_var
return results, bn_param
batch normalization存在以下缺点:
对batchsize的大小比较敏感,由于每次计算均值和方差是在一个batch上,所以如果batchsize太小,则计算的均值、方差不足以代表整个数据分布;
BN实际使用时需要计算并且保存某一层神经网络batch的均值和方差等统计信息,对于对一个固定深度的前向神经网络(DNN,CNN)使用BN,很方便;但对于RNN来说,sequence的长度是不一致的,换句话说RNN的深度不是固定的,不同的time-step需要保存不同的statics特征,可能存在一个特殊sequence比其他sequence长很多,这样training时,计算很麻烦。
与BN不同,LN是针对深度网络的某一层的所有神经元的输入按以下公式进行normalize操作。
BN与LN的区别在于:
所以,LN不依赖于batch的大小和输入sequence的深度,因此可以用于batchsize为1和RNN中对边长的输入sequence的normalize操作。
LN用于RNN效果比较明显,但是在CNN上,不如BN。
实现:
def Layernorm(x, gamma, beta):
# x_shape:[B, C, H, W]
results = 0.
eps = 1e-5
x_mean = np.mean(x, axis=(1, 2, 3), keepdims=True)
x_var = np.var(x, axis=(1, 2, 3), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
return results
BN注重对每个batch进行归一化,保证数据分布一致,因为判别模型中结果取决于数据整体分布。
但是图像风格化中,生成结果主要依赖于某个图像实例,所以对整个batch归一化不适合图像风格化中,因而对HW做归一化。可以加速模型收敛,并且保持每个图像实例之间的独立。
def Instancenorm(x, gamma, beta):
# x_shape:[B, C, H, W]
results = 0.
eps = 1e-5
x_mean = np.mean(x, axis=(2, 3), keepdims=True)
x_var = np.var(x, axis=(2, 3), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
return results
主要是针对Batch Normalization对小batchsize效果差,GN将channel方向分group,然后每个group内做归一化,算(C//G)HW的均值,这样与batchsize无关,不受其约束。
实现:
def GroupNorm(x, gamma, beta, G=16):
# x_shape:[B, C, H, W]
results = 0.
eps = 1e-5
x = np.reshape(x, (x.shape[0], G, x.shape[1]/16, x.shape[2], x.shape[3]))
x_mean = np.mean(x, axis=(2, 3, 4), keepdims=True)
x_var = np.var(x, axis=(2, 3, 4), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
return results
本篇论文作者认为,
因此作者提出自适配归一化方法——Switchable Normalization(SN)来解决上述问题。与强化学习不同,SN使用可微分学习,为一个深度网络中的每一个归一化层确定合适的归一化操作。
实现:
def SwitchableNorm(x, gamma, beta, w_mean, w_var):
# x_shape:[B, C, H, W]
results = 0.
eps = 1e-5
mean_in = np.mean(x, axis=(2, 3), keepdims=True)
var_in = np.var(x, axis=(2, 3), keepdims=True)
mean_ln = np.mean(x, axis=(1, 2, 3), keepdims=True)
var_ln = np.var(x, axis=(1, 2, 3), keepdims=True)
mean_bn = np.mean(x, axis=(0, 2, 3), keepdims=True)
var_bn = np.var(x, axis=(0, 2, 3), keepdims=True)
mean = w_mean[0] * mean_in + w_mean[1] * mean_ln + w_mean[2] * mean_bn
var = w_var[0] * var_in + w_var[1] * var_ln + w_var[2] * var_bn
x_normalized = (x - mean) / np.sqrt(var + eps)
results = gamma * x_normalized + beta
return results
本文研究的出发点主要就是BN标准化之后,会有两个可学习的超参数gamma和belta来调整,文中叫做可学习的channel-wise
仿射变换,而SE模块主要学习的是如何自适应调整channel-wise
的特征响应。于是将SE和BN结合起来,用SE来调整BN的affine transformation
。
主要流程如上,将特征图Global pooling之后接FC和Sigmoid,之后接1x1 Conv输出权值lambda,维度为[N,K,1,1],
这样还有gamma[K,C], belta[K,C],最后就可以得到
实现:
class AttenNorm(nn.BatchNorm2d):
def init ( self , C, K, eps, momentum, running):
super(AttenNorm, self ) . init (C, eps=eps,
momentum=momentum, affine=False,
track running stats=running)
self .gamma = nn.Parameter(torch.Tensor(K, C))
self . beta = nn.Parameter( torch .Tensor(K, C))
self .avgpool = nn.AdaptiveAvgPool2d(1)
self . fc = nn.Linear(C, K)
self .sigmoid = nn.Sigmoid()
def forward( self , x):
output = super(AttenNorm, self ) .forward(x)
size = output . size ()
b, c, , = x. size ()
y = self .avgpool(x) .view(b, c)
y = self . fc(y)
y = self .sigmoid(y)
gamma = y @ self.gamma
beta = y @ self . beta
gamma = weight.unsqueeze(−1).unsqueeze(−1).expand(size)
beta = bias .unsqueeze(−1).unsqueeze(−1).expand(size)
return gamma ∗ output + beta