spark笔记之Spark Streaming整合flume实战

flume作为日志实时采集的框架,可以与SparkStreaming实时处理框架进行对接,flume实时产生数据,sparkStreaming做实时处理。

Spark Streaming对接FlumeNG有两种方式,一种是FlumeNG将消息Push推给Spark Streaming,还有一种是Spark Streaming从flume 中Poll拉取数据。

6.1 Poll方式

(1)安装flume1.6以上

(2)下载依赖包

spark-streaming-flume-sink_2.11-2.0.2.jar放入到flume的lib目录下

(3)修改flume/lib下的scala依赖包版本

从spark安装目录的jars文件夹下找到scala-library-2.11.8.jar 包,替换掉flume的lib目录下自带的scala-library-2.10.1.jar。

(4)写flume的agent,注意既然是拉取的方式,那么flume向自己所在的机器上产数据就行

(5)编写flume-poll.conf配置文件

a1.sources = r1

a1.sinks = k1

a1.channels = c1

#source

a1.sources.r1.channels = c1

a1.sources.r1.type = spooldir

a1.sources.r1.spoolDir = /root/data

a1.sources.r1.fileHeader = true

#channel

a1.channels.c1.type =memory

a1.channels.c1.capacity = 20000

a1.channels.c1.transactionCapacity=5000

#sinks

a1.sinks.k1.channel = c1

a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink

a1.sinks.k1.hostname=hdp-node-01

a1.sinks.k1.port = 8888

a1.sinks.k1.batchSize= 2000                           

flume-ng agent -n a1 -c /opt/bigdata/flume/conf -f /opt/bigdata/flume/conf/flume-poll.conf -Dflume.root.logger=INFO,console

服务器上的 /root/data目录下准备数据文件data.txt

spark笔记之Spark Streaming整合flume实战_第1张图片

(5)启动spark-streaming应用程序,去flume所在机器拉取数据

(6)代码实现

需要添加pom依赖

[AppleScript] 纯文本查看 复制代码

?

1

2

3

4

5

<dependency>

    <groupId>org.apache.spark</groupId>

    <artifactId>spark-streaming-flume_2.11</artifactId>

    <version>2.0.2</version>

</dependency>

具体代码如下:

[AppleScript] 纯文本查看 复制代码

?

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

package cn.itcast.Flume

 

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}

 

//todo:sparkStreaming整合flume----采用的是拉模式

object SparkStreamingPollFlume {

  def main(args: Array[String]): Unit = {

      //1、创建sparkConf

      val sparkConf: SparkConf = new SparkConf().setAppName("SparkStreamingPollFlume").setMaster("local[2]")

      //2、创建sparkContext

      val sc = new SparkContext(sparkConf)

      sc.setLogLevel("WARN")

     //3、创建streamingContext

      val ssc = new StreamingContext(sc,Seconds(5))

      ssc.checkpoint("./flume")

     //4、通过FlumeUtils调用createPollingStream方法获取flume中的数据

     val pollingStream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(ssc,"192.168.200.100",8888)

    //5、获取flume中event的body {"headers":xxxxxx,"body":xxxxx}

     val data: DStream[String] = pollingStream.map(x=>new String(x.event.getBody.array()))

    //6、切分每一行,每个单词计为1

    val wordAndOne: DStream[(String, Int)] = data.flatMap(_.split(" ")).map((_,1))

    //7、相同单词出现的次数累加

      val result: DStream[(String, Int)] = wordAndOne.updateStateByKey(updateFunc)

    //8、打印输出

      result.print()

    //9、开启流式计算

      ssc.start()

      ssc.awaitTermination()

 

  }

  //currentValues:他表示在当前批次每个单词出现的所有的1   (hadoop,1) (hadoop,1)(hadoop,1)

  //historyValues:他表示在之前所有批次中每个单词出现的总次数   (hadoop,100)

  def updateFunc(currentValues:Seq[Int], historyValues:Option[Int]):Option[Int] = {

    val newValue: Int = currentValues.sum+historyValues.getOrElse(0)

    Some(newValue)

  }

 

}

(7)观察IDEA控制台输出

spark笔记之Spark Streaming整合flume实战_第2张图片

6.2 Push方式

(1)编写flume-push.conf配置文件

#push mode

a1.sources = r1

a1.sinks = k1

a1.channels = c1

#source

a1.sources.r1.channels = c1

a1.sources.r1.type = spooldir

a1.sources.r1.spoolDir = /root/data

a1.sources.r1.fileHeader = true

#channel

a1.channels.c1.type =memory

a1.channels.c1.capacity = 20000

a1.channels.c1.transactionCapacity=5000

#sinks

a1.sinks.k1.channel = c1

a1.sinks.k1.type = avro

a1.sinks.k1.hostname=172.16.43.63

a1.sinks.k1.port = 8888

a1.sinks.k1.batchSize= 2000                        

注意配置文件中指明的hostname和port是spark应用程序所在服务器的ip地址和端口。

flume-ng agent -n a1 -c /opt/bigdata/flume/conf -f /opt/bigdata/flume/conf/flume-push.conf -Dflume.root.logger=INFO,console

(2)代码实现如下:

[AppleScript] 纯文本查看 复制代码

?

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

package cn.test.spark

 

import java.net.InetSocketAddress

 

import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.{SparkConf, SparkContext}

 

/**

  * sparkStreaming整合flume  推模式Push

  */

object SparkStreaming_Flume_Push {

  //newValues 表示当前批次汇总成的(word,1)中相同单词的所有的1

  //runningCount 历史的所有相同keyvalue总和

  def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {

    val newCount =runningCount.getOrElse(0)+newValues.sum

    Some(newCount)

  }

  def main(args: Array[String]): Unit = {

    //配置sparkConf参数

    val sparkConf: SparkConf = new SparkConf().setAppName("SparkStreaming_Flume_Push").setMaster("local[2]")

    //构建sparkContext对象

    val sc: SparkContext = new SparkContext(sparkConf)

    //构建StreamingContext对象,每个批处理的时间间隔

    val scc: StreamingContext = new StreamingContext(sc, Seconds(5))

    //设置日志输出级别

    sc.setLogLevel("WARN")

    //设置检查点目录

    scc.checkpoint("./")

    //flume推数据过来

    // 当前应用程序部署的服务器ip地址,跟flume配置文件保持一致

    val flumeStream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createStream(scc,"172.16.43.63",8888,StorageLevel.MEMORY_AND_DISK)

 

    //获取flume中数据,数据存在event的body中,转化为String

    val lineStream: DStream[String] = flumeStream.map(x=>new String(x.event.getBody.array()))

    //实现单词汇总

   val result: DStream[(String, Int)] = lineStream.flatMap(_.split(" ")).map((_,1)).updateStateByKey(updateFunction)

 

    result.print()

    scc.start()

    scc.awaitTermination()

  }

 

}

 

}

(3) 启动执行

a. 先执行spark代码,

spark笔记之Spark Streaming整合flume实战_第3张图片

b. 然后在执行flume配置文件。

先把/root/data/ata.txt.COMPLETED 重命名为data.txt

spark笔记之Spark Streaming整合flume实战_第4张图片

(4) 观察IDEA控制台输出

spark笔记之Spark Streaming整合flume实战_第5张图片

你可能感兴趣的:(技术文章)