- 第八十九篇 大数据开发中的数据算法:贪心策略 - 生活中的“精打细算”艺术
在资源有限的世界里,贪心算法教会我们:局部最优的累积,往往是通往全局最高效的捷径。本文通过3个生活化场景+原创图表,揭示大数据开发中最实用的优化策略。目录一、贪心算法核心思想:当下即最优二、三大核心应用场景详解(附原创图表)1.文件压缩优化:Huffman编码2.任务调度优化:SPT算法3.网络拓扑优化:Prim算法三、贪心算法适用性分析四、大数据工程最佳实践五、总结:贪心思维的艺术一、贪心算法核
- 从数据到智慧:AI原生知识库构建的完整技术栈解析
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据AI-native大数据ai
从数据到智慧:AI原生知识库构建的完整技术栈解析关键词AI原生知识库、知识图谱、向量数据库、大语言模型、RAG技术、知识工程、智能问答系统摘要在人工智能飞速发展的今天,构建能够真正理解、组织和应用知识的系统已成为企业数字化转型的核心竞争力。本文将深入剖析AI原生知识库的完整技术栈,从数据采集与预处理,到知识表示与建模,再到存储架构与检索增强生成技术,全方位解读如何将原始数据转化为可行动的智慧。我们
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- 大模型——什么是 Vibe Coding?从零开始学习 AI 辅助编程
不二人生
大模型学习人工智能大模型辅助编程
大模型——什么是VibeCoding?从零开始学习AI辅助编程VibeCoding:代码消失,直觉驱动的软件开发新浪潮?生成式人工智能的指数级增长正不断重塑各个行业,软件开发领域也不例外。大约在2025年初,一股源自美国硅谷的新思潮开始引起关注:开发者似乎可以借助AI工具,在几乎不直接编写代码的情况下构建产品。这种依赖直觉、跳脱传统编码苦役的开发方式,被赋予了一个颇具时代感的名字——VibeCod
- Gemini vs DeepSeek:Transformer 架构下的技术路线差异与企业级选择
charles666666
transformer架构深度学习语言模型产品经理人工智能
一、引言:从商业价值切入Gemini和DeepSeek都基于Transformer架构,但在技术路线和应用场景上各有侧重。本文将解密同源Transformer下的技术分野,帮助企业做出更明智的大模型选型决策。二、Transformer核心机制精要Transformer架构是现代大语言模型的基础,其核心机制包括自注意力机制和前馈神经网络。自注意力机制使模型能够捕捉序列中元素的全局依赖关系,但也是GP
- C++ 内存泄漏排查全攻略:万字实战宝典
TravisBytes
编程问题档案c++开发语言linuxubuntu
写在前面本文定位为“从入门到精通”的深度教程,全文超过12,000字,结合作者多年在Qt框架、游戏引擎、服务器端及高并发协程框架中的一线经验,系统梳理C++内存泄漏的原理、检测、定位与修复方案。示例代码均可在GCC/Clang/MSVC(C++20标准)下编译通过,并特别对Windows、Linux、macOS三大平台的差异化工具与坑点进行说明。欢迎评论区互动交流~目录1.序章:为什么你迟早会遇到
- 干货分享|手把手教你,用 “扣子” 开发自己的 AI 智能体
全栈开发圈
人工智能
在当今时代,AI浪潮正以前所未有的态势席卷全球,“颠覆”“变革”等词汇频繁出现在我们的视野中,似乎已经成了老生常谈。当大多数人还沉浸在与大模型愉快聊天的乐趣时,那些走在时代前沿的高手们,早已悄然利用AI智能体(Agent)开启了自动工作、创造价值的新篇章。你是否曾无数次幻想,能拥有一个专属的AI助手?它可以在你毫无头绪时,自动生成精妙绝伦的文案;在时间紧迫的情况下,迅速制作出精美大气的PPT;还能
- 84.7k Star!Excalidraw:开源的在线白板工具,具备手绘风格和实时协作功能
蚝油菜花
每日AI项目与应用实例人工智能开源画板实时协作
❤️如果你也关注大模型与AI的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的AI应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读Excalidraw是一款开源的在线白板工具,具备手绘风格和实时协作功能。支持多种绘图工具、便捷导出、离线可用及跨平台兼容性。适用于远程协作、头脑风暴、产品设计和技术绘图等多个场景。正文(附运行
- 基于单片机的住宅防火防盗报警系统设计
启初科技
51单片机毕业设计单片机毕业设计单片机嵌入式硬件
文章目录一、系统概述二、项目内容和功能介绍三、效果图四、资料获取一、系统概述基于单片机的住宅防火防盗报警系统设计介绍一、系统设计背景与意义随着城市化进程的加快和居民生活水平的提高,住宅安全已成为人们关注的焦点。火灾和盗窃是威胁住宅安全的两大主要因素,传统的人工巡查和简单的安防设备已难以满足现代住宅的安全需求。基于单片机的住宅防火防盗报警系统集成了传感器技术、单片机控制技术和无线通信技术,能够实时监
- 微服务世界的“导航仪”!Spring Cloud五大注册中心选型指南,从此不再迷路!
码农技术栈
微服务微服务springcloud架构springbootjava后端
引言:为什么微服务需要“导航仪”?想象一下,你走进一座巨大的迷宫(微服务集群),里面有成百上千个房间(服务实例),每个房间都在动态变化位置(服务扩缩容)。注册中心就像迷宫里的导航仪,实时记录所有房间的位置,告诉你怎么最快找到目标。没有它?你可能会永远迷失在“服务调用”的迷宫里!注册中心的核心作用服务注册:服务启动时,主动上报自己的地址和状态。服务发现:调用方通过注册中心查询目标服务的位置。健康监测
- C++系列(十):面向对象编程终极指南!从封装到多态,彻底掌握类与对象的核心奥秘
傅里叶的耶
C++语言系列(教程+实战)c++类和对象
引言面向对象编程(OOP)是现代软件开发的核心范式,C++通过封装、继承和多态三大特性提供了强大的面向对象能力。这些特性使代码更易维护、扩展和复用,是构建复杂系统的基石。本章将深入探讨C++类和对象的方方面面,从基础封装到高级多态应用,帮助您掌握面向对象编程的精髓。最后,如果大家喜欢我的创作风格,请大家多多关注up主,你们的支持就是我创作最大的动力!如果各位观众老爷觉得我哪些地方需要改进,请一定在
- MCP Streamable HTTP 样例(qbit)
pythonagent
前言模型上下文协议(ModelContextProtocol,MCP),是由Anthropic推出的开源协议,旨在实现大语言模型与外部数据源和工具的集成,用来在大模型和数据源之间建立安全双向的连接。本文代码技术栈Python3.11.8FastMCP2.10.3MCP的传输机制StandardInput/Output(stdio)StreamableHTTPServer-SentEvents(SS
- 2025 轻松部署 ERPNext
linux
在数字化转型浪潮不断推进的2025年,企业对高效、灵活的企业资源计划(ERP)系统需求日益增长。作为一款开源且功能全面的ERP系统,ERPNext以其模块化、易用性和强大的自定义能力,受到越来越多中小企业的青睐。然而,部署ERPNext仍然是许多企业信息化过程中的一大挑战。本文将介绍如何借助云平台实现快速、轻松、安全地部署ERPNext系统。什么是ERPNext?ERPNext是一个开源的ERP系
- 从零开始:构建支持上下文窗口的AI原生应用实战指南
AI天才研究院
AI人工智能与大数据AI-nativeai
从零开始:构建支持上下文窗口的AI原生应用实战指南关键词:大语言模型(LLM)、上下文窗口、AI原生应用、token管理、对话状态保持、向量检索、记忆压缩摘要:本文从AI原生应用的核心需求出发,系统讲解支持上下文窗口的应用构建全流程。通过解析上下文窗口的技术本质、关键挑战及解决方案,结合Python代码实战和真实场景案例,帮助开发者掌握从需求分析到落地部署的完整方法。内容涵盖上下文窗口管理策略、t
- 检索增强生成(RAG)技术演进:从论文到工业级应用
AGI大模型与大数据研究院
AI大模型应用开发实战ai
检索增强生成(RAG)技术演进:从论文到工业级应用关键词:RAG、检索增强生成、大语言模型、知识检索、工业应用、技术演进、AI系统架构摘要:本文深入探讨检索增强生成(RAG)技术从学术研究到工业应用的完整演进历程。我们将从基础概念出发,逐步解析RAG的核心原理、架构设计、实现细节和优化策略,并通过实际案例展示如何构建高效可靠的工业级RAG系统。文章还将分析当前技术挑战和未来发展方向,为读者提供全面
- 颠覆人机交互!多模态 AI Agents 大模型如何用 5 大模式开启智能新时代?
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列七颠覆人机交互!多模态AIAgents大模型如何用5大模式开启智能新时代?一、从“单一感知”到“多模态融合”:A
- 深入剖析开源AI阅读器项目Saga Reader基于大模型的文本转换与富文本渲染优化方案
魑魅丶小鬼
人工智能
引言AI阅读器作为一种新型的内容消费工具,正在改变人们获取和处理信息的方式。本文将介绍SagaReader项目中如何利用大型语言模型(LLM)进行网页内容抓取、智能优化和富文本渲染,特别是如何通过精心设计的提示词(prompt)引导LLM生成样式丰富的HTML内容,提升用户阅读体验。关于SagaReader基于Tauri开发的著名开源AI驱动的智库式阅读器(前端部分使用Web框架),能根据用户指定
- 实操 SpringBoot+MCP!
清风孤客
springboot后端java人工智能
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——“帮我查找所有2023年出版的图书”、“创建一个新用户叫张三,邮箱是
[email protected]”。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- 云成本优化的核心原则与框架
极客奇点
云服务降本增效云计算成本优化FinOps降本增效
一、引言:云成本失控的挑战据Flexera2022年报告,全球企业32%的云支出被浪费,主因包括资源闲置、配置超配、缺乏成本可见性等。面对此现状,FinOps(财务运营)作为云成本管理的核心框架,通过“成本可视-分配-优化”闭环,成为企业降本增效的关键手段。二、FinOps核心理念与三支柱框架FinOps的本质是打破财务、技术、业务的壁垒,建立数据驱动的成本治理文化。其框架由三大支柱构成:┌───
- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 构建你的AI应用开发平台:如何在Ubuntu上使用Docker部署Dify
kaixin_啊啊
商业合作cpolar人工智能ubuntudocker
文章目录前言1.Docker部署Dify2.本地访问Dify3.Ubuntu安装Cpolar4.配置公网地址5.远程访问6.固定Cpolar公网地址7.固定地址访问前言本文主要介绍如何在LinuxUbuntu系统使用Docker快速部署大语言模型应用开发平台Dify,并结合cpolar内网穿透工具实现公网环境远程访问本地Dify服务!Dify是一款开源的大语言模型(LLM)应用开发平台。它融合了后
- 穿越SaaS迷雾:从工具到智能体,国内垂直SaaS的“阵痛”与“新生”
——在增长与亏损的悖论中,一场由AI驱动的“大洗牌”正悄然上演引言:每个SaaS创始人的“冰与火之歌”每个投身国内SaaS(软件即服务)创业的创始人,心中或许都吟唱着一首“冰与火之歌”。“火”的一面,是资本的热捧、数字化转型的时代浪潮,以及那条陡峭诱人的ARR(年度经常性收入)增长曲线。根据相关调研报告,2023年中国企业级SaaS市场规模已达888亿元,其中垂直行业SaaS的占比正从35%攀升至
- vLLM 优化与调优:提升模型性能的关键策略
强哥之神
人工智能深度学习计算机视觉deepseek智能体vllm
在当今人工智能领域,大语言模型(LLM)的应用日益广泛,而优化和调优这些模型的性能成为了至关重要的任务。vLLM作为一种高效的推理引擎,提供了多种策略来提升模型的性能。本文将深入探讨vLLMV1的优化与调优策略,帮助读者更好地理解和应用这些技术。抢占式调度(Preemption)由于Transformer架构的自回归特性,有时键值缓存(KVcache)空间不足以处理所有批量请求。在这种情况下,vL
- 标题:2025传统制造业护网实战指南:从合规防御到智能免疫的体系化进阶
上海云盾商务经理杨杨
网络
引言2025年,随着《工业互联网企业网络安全》三项国家标准全面实施,护网行动已从“合规检查”升级为“能力对抗”。传统制造业在数字化转型浪潮中,面临设备老旧、人才短缺、供应链风险激增等挑战,41.5%的企业计划年内增加安全预算。本文将结合新规要求与行业最佳实践,深度解析传统制造业如何构建“技术-管理-运营”三位一体的护网防御体系。一、传统制造业的护网困境:三大核心矛盾1.设备老旧化vs安全新标准历史
- 从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南
从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南一、项目概述大家好!今天给大家带来一个干货满满的实战项目——基于ESP32S3硬件和Python后端的智能语音助手系统。这个项目将物联网技术与AI技术完美结合,打造一个可以实时对话、意图识别的智能语音交互系统。相比传统的离线语音系统只能识别固定命令词,我们这套系统可以:实现自然语言理解,支持多种表达方式无需预设固定命令词,更
- Docker容器技术:从入门到实践
CarlowZJ
AI应用开发落地docker容器运维
目录摘要一、引言二、Docker的基本概念(一)容器与虚拟机(二)Docker的三大核心概念(三)Docker的优势三、Docker的安装与配置(一)安装Docker(二)配置Docker四、Docker镜像管理(一)拉取镜像(二)构建镜像(三)推送镜像五、Docker容器操作(一)启动容器(二)进入容器(三)停止和删除容器六、Docker网络配置(一)默认网络模式(二)自定义网络(三)主机模式(
- 【AI大模型】PyTorch Lightning 简化工具
我爱一条柴ya
学习AI记录人工智能pytorchpythonaiAI编程
PyTorchLightning是一个轻量级的PyTorch封装库,它通过抽象训练循环的工程细节,让研究人员可以专注于模型设计和实验。以下是PyTorchLightning的核心概念和实战指南。核心优势基础使用:三步搭建训练流程1.定义LightningModuleimporttorchimporttorch.nnasnnimportpytorch_lightningasplfromtorchme
- 【AI大模型】Transformer架构位置编码
我爱一条柴ya
学习AI记录人工智能神经网络aiAI编程
Transformer架构中的位置编码(PositionalEncoding)是其核心设计之一,用于解决一个关键问题:Self-Attention机制本身对输入元素的顺序是“无感知”的(permutationinvariant)。问题:为什么需要位置编码?Self-Attention的本质缺陷:Self-Attention通过计算所有元素对之间的关联来工作。然而,它只关心元素是什么(x_i的内容)
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后