最短路专题1 | CodeForces 601A - 混合Dijkstra算法

最短路专题1 | CodeForces 601A - 混合Dijkstra算法

前言

这个十一没有出去玩,花了一些时间在写之前提过的markdown编辑器,本文就是用这个编辑器写的2333,今天准备写咱们的新专题 — 最短路。另外之前提过专题的题目主要使用kuangbin系列,现在改变主意了,专题题目全部使用CodeForces上的题目,原因主要是POJ等国内的OJ系统不能看源代码,而且题目质量稍微欠缺一些,然后没有区分度。

CodeForces能够看到高手写的代码,题目质量相对好些,然后每个题目的难易都用a/b/c/d标明了。
OK,开始看题。

601A. The Two Routes

In Absurdistan, there are n towns (numbered 1 through n) and m bidirectional railways. There is also an absurdly simple road network — for each pair of different towns x and y, there is a bidirectional road between towns x and y if and only if there is no railway between them. Travelling to a different town using one railway or one road always takes exactly one hour.
有n个城市,m个双向铁轨。还有一个公路网络,对于每一对城镇x和y,如果它们没有铁路,那么就一定会有公路。去一个不同的城镇,不管是铁路还是公路,都需要一个小时。

A train and a bus leave town 1 at the same time. They both have the same destination, town n, and don’t make any stops on the way (but they can wait in town n). The train can move only along railways and the bus can move only along roads.
火车和汽车从1号站同时离开,同时开往n。

You’ve been asked to plan out routes for the vehicles; each route can use any road/railway multiple times. One of the most important aspects to consider is safety — in order to avoid accidents at railway crossings, the train and the bus must not arrive at the same town (except town n) simultaneously.
你需要计划一下出行的方案,每一条线路都能够使用公路或者铁路。为了避免意外发生,火车和汽车不能够同时到达同一个城镇(n除外)。

Under these constraints, what is the minimum number of hours needed for both vehicles to reach town n (the maximum of arrival times of the bus and the train)? Note, that bus and train are not required to arrive to the town n at the same moment of time, but are allowed to do so.

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 400, 0 ≤ m ≤ n(n - 1) / 2) — the number of towns and the number of railways respectively.
第一行包含2个整数n和m,n是城市的数量,m是铁路的数量。

Each of the next m lines contains two integers u and v, denoting a railway between towns u and v (1 ≤ u, v ≤ n, u ≠ v).
下面的m行表示路线

You may assume that there is at most one railway connecting any two towns.

Output

Output one integer — the smallest possible time of the later vehicle’s arrival in town n. If it’s impossible for at least one of the vehicles to reach town n, output  - 1.
输出最短路径

Examples

input
4 2
1 3
3 4

output
2

Note
In the first sample, the train can take the route 1 → 3 → 4 1\to3\to4 134 and the bus can take the route 1 → 2 → 4 1\to2\to4 124 . Note that they can arrive at town 4 at the same time.

In the second sample, Absurdistan is ruled by railwaymen. There are no roads, so there’s no way for the bus to reach town 4.

一道最简单的最短路径问题,权重可以看作1。

题目大意是有铁路和公路两种路,而且两种方式走的交通工具不能在中途相遇。

此外,有铁路的地方肯定没有公路。

这种情况下就会有一个结论,就是至少有一种交通可以直接1到n

这样只需要对另一种跑一个最短路就OK了。

#include 
#include 
#include 

// 图
int g[410][410];

//0号节点到节点i的路径长度
int d[410];

int main() {
#ifdef __MSYS__
    freopen("test.txt", "r", stdin);
#endif

    // 输入部分
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 0; i < m; i++) {
        int a, b;
        scanf("%d%d", &a, &b);
        --a, --b;
        g[a][b] = g[b][a] = 1;
    }

    std::queue<int> q;
    //放入0号节点
    q.push(0);
    memset(d, -1, sizeof(d));
    d[0] = 0;
    
    while (!q.empty()) {
        int v = q.front();
        q.pop();
        // 最后一个节点
        if (v == n - 1) {
            printf("%d\n", d[v]);
            return 0;
        }
        // 遍历所有相邻的节点
        for (int i = 0; i < n; i++)
            //g[v][i]为0,g[0][n-1]为1,如果火车直连,那么g[v][i]不能有火车,也就是0,计算的是汽车的最短路径
            //g[v][i]为1,g[0][n-1]为0,如果火车不直连,那么汽车必然是直连的,计算的是火车的最短路径
            if (g[v][i] ^ g[0][n - 1]) {
                if (d[i] == -1) {
                    q.push(i);
                    d[i] = d[v] + 1;
                }
            }
    }
    printf("-1\n");
    return 0;
}

这里使用的是Dijkstra(注意后面没有字母l)算法,这里我们简单回顾一下dij算法。

首先,对于一个网络G,我们选取一个点A作为起始点,放入队列Q。

然后,我们开始处理队列Q,如果Q存在元素,就一直执行。

每次执行,都是从队列中取得d值最小的元素v,然后遍历这个v相邻的节点i,如果d[i]为INF,也就是离节点A的距离为无穷大,那么就将这个元素加入到Q中,更新d[i]=min{d[i], d[i]+w[v][i]}。

对于dij算法来说,可以将图分为2部分,一部分是dij的最短路图G1,另外剩下的是还没有加入的图G2。每次循环都会在G2中寻找节点i,这个节点i必须是G2中d值最小的,然后更新节点i相邻的节点的d值。整个过程是G2的节点流向G1,最终G1就是一个最短路径图。

个人公众号(acm-clan):ACM算法日常

专注于基础算法的研究工作,深入解析ACM算法题,五分钟阅读,轻松理解每一行源代码。内容涉及算法、C/C++、机器学习等。
最短路专题1 | CodeForces 601A - 混合Dijkstra算法_第1张图片

你可能感兴趣的:(算法,C/C++)