- 工业相机和镜头选型标准
金蝶软件小李
OpenCV与机器视觉Halcon机器视觉C#程序设计语言基础数码相机计算机视觉算法人工智能深度学习
工业相机和镜头选型标准包括以下几点:相机选型标准分辨率:根据目标物的大小和检测精度来确定。分辨率越高,能捕捉到的细节越丰富,但也会增加数据处理量和成本。帧率:根据目标物或相机的运动速度来选择。高帧率相机适用于快速运动物体的捕捉和分析。传感器类型:CCD或CMOS。CCD在成像质量、色彩还原和信噪比方面更具优势,适用于对成像质量要求很高的场景;CMOS图像采集速度快,功耗低,集成度高,制造成本低,适
- 振动分析常用的频谱类型
m0_55576290
工作一二三信号与系统振动分析
文章目录振动分析常用的频谱类型1.幅值谱(AmplitudeSpectrum)-最常用2.功率谱密度(PSD)-用于随机信号3.自功率谱(AutoPowerSpectrum)振动分析中的选择原则.振动分析中的频谱选择建议故障诊断→幅值谱模态分析→自功率谱随机振动→功率谱密度宽动态范围→对数坐标实际应用中的处理方法总结振动分析常用的频谱类型1.幅值谱(AmplitudeSpectrum)-最常用%幅
- Python爬虫实战:研究chardet库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言chardet
1.引言1.1研究背景与意义在互联网信息爆炸的时代,网络数据采集技术已成为信息获取、数据分析和知识发现的重要手段。Python作为一种高效的编程语言,凭借其丰富的第三方库和简洁的语法,成为爬虫开发的首选语言之一。然而,在网络数据采集中,文本编码的多样性和不确定性一直是困扰开发者的主要问题之一。不同网站可能采用不同的编码方式(如UTF-8、GBK、GB2312等),甚至同一网站的不同页面也可能使用不
- Java升级版的学生成长管理系统
学生成长管理系统升级版需求为了学生管理系统书写一个登录、注册、忘记密码的功能。只有用户登录成功之后,才能进入学生管理系统中进行增删查改操作。分析登录界面System.out.println("欢迎来到学生成长管理系统");System.out.println("请选择操作1登录2注册3忘记密码");用户类属性:用户名、密码、身份证号码、手机号码注册功能用户名需求满足以下要求:验证要求:用户名唯一用
- 七、SpringCloud 项目迁移至 K8s
退役小学生呀
K8s企业级深度研修kuberneteslinux容器云原生k8s
七、SpringCloud项目迁移至K8s文章目录七、SpringCloud项目迁移至K8s1、环境准备1.1集群规划1.2SpringCloud项目架构及迁移需求分析2、迁移Eureka集群2.1构建及容器化2.2部署至K8s2.3创建通信Service3、迁移网关服务3.1构建及容器化3.2部署至K8s3.3创建Service3.4创建Ingress4、迁移其他springboot服务4.1构
- 风险管理:从评估到分析的完整指南
""背景简介在面对日益复杂化的网络安全挑战时,有效的风险管理成为了企业和组织不可或缺的一部分。本文基于提供的章节内容,将探讨风险管理的核心过程,包括风险评估和风险分析的步骤,以及如何选择合适的方法论来应对不同的风险场景。风险管理过程的持续监控风险管理并非一成不变,它需要一个持续的监控过程来确保控制措施的有效性。章节中提到,监控(Monitor)是风险管理过程中的一个持续步骤,它负责观察控制措施,并
- 大前端日志分析的AI应用:从海量日志中提取有价值的运维信息
欧阳天羲
大前端与AI的深度融合#AI在大前端安全与运维篇前端人工智能运维
在大前端技术快速发展的今天,前端应用的复杂度呈指数级增长,涵盖Web、移动端H5、小程序、快应用等多端形态。随之而来的是海量日志数据的爆发式增长——从浏览器控制台输出到移动端性能埋点,从用户行为轨迹到API调用异常,这些日志分散在不同终端、格式异构,传统的人工分析或规则引擎已难以应对。本文将系统阐述AI技术如何赋能大前端日志分析,从日志采集到智能诊断的全流程解决方案,结合实际案例展示如何利用机器学
- 关于小公司的空降兵和空降兵的出路
gongbenwen
关于小公司的空降兵,这是一件比较有意思的事情,曾在两家不同的小的创业公司,经历了其他空降兵的入职,也体验过作为空降兵的入职。通过观察分析,发现八成以上的小公司的空降兵,都不容易持久在一家公司待下去。总结了空降兵,容易在一家新的小公司出走的原因。首先,从公司层面,小公司本身摊子就小,一般空降兵都会要求比较高的薪酬,能不招空降兵就不招,但是原始初创人员,有时很容易因为在发展过程中遇到的磕磕绊绊,认为合
- 场外期权流动性风险分析
张文6.7
区块链
场外期权流动性风险的定义场外期权流动性风险指因市场深度不足或交易对手稀缺,导致无法及时以合理价格平仓或对冲头寸的风险。与交易所交易的标准化期权不同,场外期权通常为定制化合约,流动性较低。流动性风险的来源合约非标准化:场外期权的条款(如行权价、到期日、标的资产)由交易双方协商确定,缺乏统一市场,难以快速转让。交易对手集中:依赖少数金融机构做市,若对手方退出或信用恶化,可能无法找到替代交易方。市场冲击
- 开源模型应用落地-让AI更懂你的每一次交互-Mem0集成Qdrant、Neo4j与Streamlit的创新实践(四)
开源技术探险家
开源模型-实际应用落地neo4j开源人工智能语言模型
一、前言在人工智能迅速发展的今天,如何让AI系统更懂“你”?答案或许藏在个性化的记忆管理之中。Mem0作为一个开源的记忆管理系统,正致力于为AI赋予长期记忆与个性化服务能力。通过结合高性能向量数据库Qdrant、图数据库Neo4j的强大关系分析能力以及Streamlit的高效可视化交互,我们可以打造出一个既能存储用户历史行为、又能实时推理并展示结果的智能记忆助手。本文将带您一步步探索这一技术组合的
- 21天刷题计划之10.1—统计大写字母个数(Java语言描述)
justlikeu777
21天刷题计划java基础算法基础
题目描述:找出给定字符串中大写字符(即’A’-‘Z’)的个数接口说明原型:intCalcCapital(Stringstr);返回值:int输入描述:输入一个String数据输出描述:输出string中大写字母的个数示例1输入add123#$%#%#O输出1分析:获取输出的字符串,将字符串转换成字符数组,遍历字符数组并判断是否为大写字母即可。importjava.util.Scanner;publ
- 如何在YashanDB数据库中进行高效的JSON数据存储
数据库
随着业务对非结构化和半结构化数据存储需求的增加,JSON数据类型逐渐成为数据库支持的关键特性。然而,JSON数据的高效存储与访问面临性能瓶颈、一致性保障及空间利用率等挑战。YashanDB作为现代企业级数据库,需提供有效的机制解决上述难题,从而满足实时查询、高并发访问及数据一致性的需求。本文针对YashanDB数据库的体系架构、存储引擎及索引机制,深入分析如何实现高效的JSON数据存储与访问,旨在
- 如何在YashanDB数据库中高效处理海量数据
数据库
在现代数据库技术中,海量数据的管理和处理成为了一个普遍存在的挑战。随着数据规模的不断扩大,性能瓶颈、数据一致性问题以及易用性需求等问题日益凸显。这些挑战促使企业寻求更为高效的解决方案,以支撑海量数据的存储、分析与挖掘。YashanDB作为一款专为处理海量数据而设计的数据库,凭借其高可扩展性、高并发性能和高可用性,提供了一系列技术手段以应对这些挑战。本文旨在探讨如何在YashanDB中高效地管理和处
- 如何设计基于YashanDB数据库的高效查询
数据库
在当今数据驱动的业务环境中,提高数据库查询性能已经成为各类企业面临的重大挑战。随着数据量的快速增长,许多机构遭遇了性能瓶颈、数据一致性问题和查询响应延迟等一系列问题。在这样的背景下,优化数据库架构、提高查询效率迫在眉睫。本文将集中在YashanDB数据库的查询设计上,提供技术分析和操作指导,以帮助开发人员设计高效的查询策略,实现优越的性能。YashanDB的体系架构YashanDB支持多种部署形态
- resttemplate默认超时时间_使用微软数据通信框架WCF:客户端调用服务超时分析
weixin_39665302
服务端设置超时时间
首先给出对调用超时的分析和解决办法,然后在给出完整和应用代码。1客户端调用超时运行客户端,执行调用ServiceProxyproxy=newServiceProxy();strings=proxy.GetData(1);通过配置sendTimeout参数设定超时时间,超时时间默认为1分钟,上述配置中采用了默认超时时间。InnerExceptionMessage请求通道在等待00:00:59.946
- linux 中路由解决方案1
在Linux的路由表中,当存在多条默认路由(0.0.0.0)且它们的Metric值相同时,内核会根据其他因素决定优先使用哪条路由。在你的例子中,eth1和wlan0的Metric值均为1024,但系统优先选择eth1,可能原因如下:可能原因分析接口优先级(基于接口索引或名称顺序)Linux内核可能会根据网络接口的创建顺序或接口索引号(ifindex)决定优先级。通常,先初始化的接口(如eth1)会
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- (五)PS识别:压缩痕迹挖掘-压缩量化表与 DCT 系数分析
超龄超能程序猿
机器学习python图像处理人工智能计算机视觉
(一)PS识别:Python图像分析PS识别之道(二)PS识别:特征识别-直方图分析的从原理到实现(三)PS识别:基于噪声分析PS识别的技术实现(四)PS识别:基于边缘纹理检测分析PS识别的技术实现一介绍本文将介绍一种基于量化表分析和DCT系数分析的图片PS检测方法,帮助你判断图片是否经过处理。二实现原理量化表分析在JPEG图片的压缩过程中,量化表起着关键作用。不同的软件或处理操作可能会改变量化表
- 算法分析与设计实验2:实现克鲁斯卡尔算法和prim算法
表白墙上别挂我
算法笔记经验分享
实验原理(一)克鲁斯卡尔算法:一种用于求解最小生成树问题的贪心算法,该算法的基本思想是按照边的权重从小到大排序,然后依次选择边,并加入生成树中,同时确保不会形成环路,直到生成树包含图中所有的顶点为止。具体步骤:边的排序:将所有边按照权重从小到大排序。初始化:创建一个空的生成树(可以是一个空的图结构),以及一个用于记录每个顶点所属集合(或称为连通分量)的数据结构(例如并查集)。边的选择:依次选择排序
- (面经总结)一篇文章带你整理面试过程中常考的九大排序算法
南淮北安
冲刺大厂之面经总结面经排序算法二分插入冒泡快速
文章目录一、二分插入排序1.原理2.代码二、冒泡排序1.原理2.代码三、插入排序算法1.原理2.代码四、快速排序算法1.原理2.代码五、希尔排序1.原理2.代码六、归并排序1.原理2.代码七、桶排序八、基数排序九、堆排序1.原理2.代码十、总结1.算法分类2.性能分析一、二分插入排序首先必须是排好序的数组,然后通过二分查找,找到合适的位置,插入1.原理二分查找算法又叫作折半查找,要求待查找的序列有
- SQLite 数据库与其他数据库的对比分析
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&Agent数据库sqliteai
SQLite数据库与其他数据库的对比分析关键词:SQLite数据库、其他数据库、对比分析、数据库特性、应用场景摘要:本文旨在对SQLite数据库与其他常见数据库进行全面的对比分析。首先介绍了数据库对比分析的背景和目的,让读者了解为何需要进行这样的对比。接着详细阐述了SQLite以及其他具有代表性数据库(如MySQL、Oracle、PostgreSQL等)的核心概念和架构,通过Mermaid流程图展
- Python 编程基础作业总结
本周主要围绕Python基础编程展开了学习,通过一系列的作业题来巩固所学知识。这些题目涵盖了输入输出、条件判断、循环结构等多个基础知识点,下面将对每道作业题进行详细分析。1.计算指定月份第一天是星期几题目描述编写一个程序,接受用户输入的一个年份和一个月份,输出该月份的第一天是星期几。使用蔡乐公式计算星期。提示:使用蔡乐公式计算星期。W=((26*M-2)/10+D+Y+Y/4+C/4-2*C)%7
- IDEA依赖冲突分析神器—Maven Helper
IDEA依赖冲突分析神器—MavenHelperMavenHelper是一款专为IntelliJIDEA设计的插件,它极大地简化了Maven项目中依赖冲突的分析和解决过程。以下是对MavenHelper的详细介绍及其使用方法:一、MavenHelper简介MavenHelper插件提供了一个直观的图形界面,帮助开发者查看和管理Maven项目的依赖关系。它特别擅长于展示和识别依赖冲突,使开发者能够迅
- 通信算法之278:数据链/自组网通信设备--MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码--1.系统指标需求及帧结构设计
秋风战士
无线通信基带处理算法MATLAB仿真软件无线电算法无人机经验分享
MIMO(2T2R)-OFDM系统系列–实际工程应用算法代码第一章:系统指标需求拆解分析第二章:通信系统帧结构设计和OFDM参数设计第三章:通信业务速率设计及理论解调门限第四章:同步序列设计及同步性能仿真验证第五章:数据业务设计及性能仿真验证第六章:信道模型设计第七章:接收关键算法设计及仿真验证第八章:其它待补充本文目录MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码一、实际项目:系
- HarmonyOS5.0仓颉引擎与盘古大模型:个性化作业批改系统架构设计与实现
H老师带你学鸿蒙
系统架构HarmonyOS5.0鸿蒙华为仓颉教育
人工智能与边缘计算的融合正在重塑教育评价体系。本文将展示如何基于HarmonyOS5.0仓颉并发引擎和盘古大模型,构建新一代智能作业批改系统。系统架构全景graphTDA[学生端设备]-->|提交作业|B[仓颉边缘处理]B-->C[盘古大模型分析]C-->D[个性化反馈生成]D-->E[学生终端]D-->F[教师仪表盘]subgraphHarmonyOS分布式系统B-->|设备协同|G[教室平板集
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- Java 中 Maven 依赖冲突的解决策略
Java大师兄学大数据AI应用开发
AI实战AI人工智能与大数据应用开发javamaven网络ai
Java中Maven依赖冲突的解决策略关键词:Java、Maven、依赖冲突、解决策略、依赖分析摘要:在Java开发中,Maven作为强大的项目管理和构建工具,极大地提高了开发效率。然而,依赖冲突是使用Maven时常见且棘手的问题,它可能导致项目编译失败、运行时出现异常等情况。本文将深入探讨Maven依赖冲突的产生原因、表现形式,并详细介绍多种有效的解决策略。通过实际案例和代码分析,帮助开发者更好
- DeepSeek在智能教育评估中的应用:试题检索
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络easyui前端javascriptai
DeepSeek在智能教育评估中的应用:试题检索关键词:DeepSeek、智能教育、试题检索、自然语言处理、知识图谱、个性化学习、评估系统摘要:本文探讨了DeepSeek大模型在智能教育评估系统中的试题检索应用。我们将深入分析如何利用先进的自然语言处理技术和知识图谱构建高效的试题检索系统,实现个性化学习路径推荐和精准评估。文章将从核心概念、技术原理到实际应用场景,全面解析这一创新教育技术解决方案。
- 基于高斯两步移动搜寻法(2SFCA)的城市绿地可达性分析
yorov
GIS技巧算法
【2SFCA的基本思路,可以略过】对每个供给点j,搜索所有在j搜寻半径(d0)范围内的需求点(k),计算供需比Rj;对每个需求点i,搜索所有在i搜寻半径(d0)范围内的供【数据】成都市城区绿地数据、各街道小区数据、路网数据OSM【那再来理解一下高斯两步移动搜索法】对于最初的两步移动模型相当于二分,而高斯型相当于是缓慢下降—急速下降—趋于平缓的状态。很像上次莫兰指数里说的空间关系概念化。第一步,对于
- LeetCode1004. 最大连续1的个数 III
Zedthm
算法javaleetcode
题目分析本题要求在最多翻转K个0的条件下,找到二进制数组中最长的连续1子数组。翻转操作实际上是将0视为可用资源,用来扩展连续1的区间。解题思路滑动窗口(双指针):核心思想:维护一个窗口,确保窗口内最多包含K个0(即最多可翻转K次)右指针:遍历数组,扩展窗口左指针:当窗口内0的数量超过K时,收缩窗口直到满足条件关键操作:遇到0时增加计数器当0的数量超过K时,移动左指针直到移除一个0始终记录窗口的最大
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&