- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第四节函数展开成幂级数
一、泰勒级数与麦克劳林级数泰勒多项式与泰勒级数泰勒多项式:若函数f(x)在点x_0处具有直到n阶的导数,则可以构造一个n次多项式:P_n(x)=f(x_0)+f’(x_0)(x-x_0)+[f’'(x_0)/2!](x-x_0)^2+…+[f^(n)(x_0)/n!](x-x_0)^n这个多项式是f(x)在x_0处的最佳逼近多项式。泰勒级数:当n→∞时,若泰勒多项式的余项R_n(x)→0,则f(x
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第四节隐函数的求导公式
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第四节隐函数的求导公式。我会用最通俗的语言和具体例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、隐函数是什么?为什么需要它?1.显函数vs隐函数显函数:直接写出因变量和自变量的关系,例如:y=f(x)或z=f(x,y)隐函数:因变量和自变量的关系隐含在一个方程中,例
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第三节多元复合函数的求导法则
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第三节多元复合函数求导法则。我会用“买菜路线”和“温度变化”两个生活例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、从买菜路线说起:为什么需要链式法则?场景:小明从家出发,先骑车到菜市场(路程x公里),再步行到超市(路程y公里)。已知:骑车速度v_x=20km/h,
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 数学与加密货币:区块链技术的数学基础
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与加密货币:区块链技术的数学基础》关键词数学基础加密货币区块链技术密码学分布式账本摘要本文旨在探讨数学在加密货币和区块链技术中的基础性作用。通过逐步分析,我们将深入理解数学概念如何支持加密货币的安全性、去中心化和不可篡改性。文章将涵盖初等数学和高等数学的应用,以及算法原理的讲解,帮助读者了解数学与加密货币的紧密联系。目录大纲背景介绍1.1.引言1.2.加密货币与区块链的基本概念数学基础2.1
- AI大模型从0到1记录学习 大模型技术之数学基础 day26
Gsen2819
算法人工智能大模型人工智能学习算法机器学习目标检测深度学习
高等数学导数导数的概念导数(derivative)是微积分中的一个概念。函数在某一点的导数是指这个函数在这一点附近的变化率(即函数在这一点的切线斜率)。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函数输出值的增量∆y与自变量增量∆x的比值在∆x趋于0时的极限如果存在,即为f在x_0处的导数,记作f’(x_0)、df/dx(x_0)或〖df/d
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 两矩阵相乘的秩的性质_浅析数学中的行列式与矩阵
weixin_39851977
两矩阵相乘的秩的性质利用逆矩阵解线性方程组
引言线性代数(高等代数)是进入大学之后学习代数的起点,和数学分析,解析几何并称数学三大基础课。需要注意的是,一般理工科学的是线性代数,数学系学的是高等代数,高等代数相比于线性代数,除了内容上增加了多项式以外,难度和深度也有增加。当然,高等数学和数学分析所学的内容也有所区别,这里就不再赘述。以如今的数学观点来看,线性代数几乎无处不在,它的概念与方法已经渗透到和数学相关的方方面面,这也正是为什么线性代
- 李永乐复习全书高等数学 第二章 一元函数微分学
古月忻
考研数学一高等数学刷题错题记录#考研数学一高等数学复习全书高等数学复习全书考研其他
2.1 导数与微分,导数的计算例2 设g(x)g(x)g(x)在x=0x=0x=0处存在二阶导数,且g(0)=1,g′(0)=2,g′′(0)=1g(0)=1,g'(0)=2,g''(0)=1g(0)=1,g′(0)=2,g′′(0)=1,并设f(x)={g(x)−e2xx,x≠00,x=0,f(x)=\begin{cases}\cfrac{g(x)-e^{2x}}{x},&x\ne0\\0,
- 《高等数学》(同济大学·第7版)第四章第四节有理函数的积分
没有女朋友的程序员
高等数学
一、有理函数积分的基本概念什么是有理函数?有理函数是指两个多项式相除的形式:R(x)=P(x)/Q(x)其中P(x)和Q(x)都是多项式。真分式与假分式真分式:分子次数小于分母次数例如:(x+1)/(x²+2x+3)假分式:分子次数大于等于分母次数例如:(x³+2x)/(x²+1)二、有理函数积分的解题步骤第一步:判断分式类型如果是假分式,先用多项式除法化为多项式与真分式的和。第二步:分母因式分解
- 《高等数学》(同济大学·第7版)第四章第二节换元积分法
没有女朋友的程序员
高等数学
一、换元积分法的基本思想换元积分法就像"搭积木",通过变量替换把复杂积分变成简单积分。主要有两种方法:第一类换元法(凑微分法)核心:把被积函数的一部分和dx凑成新的微分口诀:“看结构,凑微分,换变量,求积分”第二类换元法核心:直接设新的变量替换常用于含根式的积分二、第一类换元法详解我们通过具体例子来理解:例1:计算∫2x·cos(x²)dx解:观察发现x²的导数是2x,正好有2xdx设u=x²,那
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- java实现y = x 函数的积分运算(附带源码)
Katie。
Java实战项目数学建模
1.项目背景详细介绍在高等数学中,积分是对函数进行累积求和的过程。对简单函数y=x的不定积分和定积分具有典型意义:不定积分:∫xdx=x²/2+C,其中C为常数项。定积分:∫₀ᵃxdx=a²/2。随着数值计算的广泛应用,如何在计算机程序中准确、高效地实现积分操作成为基础需求。Java作为通用语言,也需要借助数值方法或解析方法来完成函数积分。虽然y=x的积分具有解析解,但项目中往往需要处理任意函数,
- 高等数学基础(拉格朗日乘子法)
Psycho_MrZhang
人工智能数学基础数学算法
求解优化问题,拉格朗日乘子法是常用的方法之一问题引入已知目标函数f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2,在约束条件xy=3xy=3xy=3下,求f(x,y)f(x,y)f(x,y)的最小值解:这是一个典型的约束优化问题,在之前最简单的办法就是通过约束条件将其中的变量进行变换,带入目标函数求出极点将y=3xy=\frac{3}{x}y=x3,带入f(x,y)=x
- 高等数学基础(牛顿/莱布尼茨公式)
Psycho_MrZhang
人工智能数学基础数学算法
牛顿/莱布尼茨公式主要是为定积分的计算提供了高效的方法,其主要含义在于求积分的函数(f(x)f(x)f(x))连续时候总是存在一条积分面积的函数(F(x)F(x)F(x))与之对应,牛顿莱布尼茨公式吧微分和积分联系了起来,提供了这种高效计算积分面积的方法参考视频理解:https://www.bilibili.com/video/BV1qo4y1G7Da/积分上限的函数及其导数设函数f(x)f(x)
- 考研数一公式笔记
代码小白 ac
人工智能
考研数学(一)核心结论与易错点详细笔记第一部分:高等数学一、函数、极限、连续(一)重要结论与公式等价无穷小替换(仅限乘除运算,极限过程为x→0或某特定值导致因子→0):sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)x²e^x-1~xln(1+x)~x(1+x)^α-1~αxa^x-1~xlna(其中a>0,a≠1)重要极限:lim(sinx/x)=1(当x→0
- 先说爱的人为什么先离开
依旧天真无邪
Diary个人开发
2025年5月19日,15~23℃,贼好的一天,无事发生待办:2024年税务申报《高等数学2》取消考试资格学生名单《物理[2]》取消考试资格名单5月24日、25日监考报名《高等数学2》备课《物理[2]》备课职称申报材料教学技能大赛PPT遇见:无意间点到Google相册里面,看到好多曾经。犹记得当年谷歌相册号称无限存储空间,现在已经只有15GB了。这是我第一喜欢的女孩子,在读硕士期间,一起去过昆明失
- 26考研数学全年备考规划!!!
数学再爱我一次5555
考研学习大数据
参考书:《张宇考研数学基础30讲》、《1000题》、《张宇考研数学强化36讲》、《张宇8➕4预测卷备考工具:考研数学欧几里得小程序学习资源类全面资源覆盖:整合历年真题库、各类数学专辑和选择题库,涵盖高等数学、线性代数、概率论与数理统计等考研数学主要科目,满足用户各阶段复习需求。独家不跳步解析:每一道题目都配有详细到每一步骤的解析,确保用户完全掌握解题逻辑,能清楚了解重点题、难题的解题思路,有助于锻
- 高等数学第七章---微分方程(§7.1-§7.3微分方程概念、一阶微分方程、一阶微分线性方程)
门前云梦
高等数学考研笔记经验分享学习高等数学
§7.1微分方程有关概念例题已知曲线y=f(x)y=f(x)y=f(x)过点(1,2)(1,2)(1,2),且该曲线上任一点处的切线斜率为2x2x2x,求该曲线方程。解:由已知条件可得:曲线的导数关系:y′=2xy'=2xy′=2x(或dydx=2x\frac{dy}{dx}=2xdxdy=2x)(1)(1)(1)曲线过点(1,2)(1,2)(1,2):当x=1x=1x=1时,y=2y=2y=2(
- 硬件工程师的成长路线
可喜~可乐
嵌入式硬件硬件工程fpga开发pcb工艺物联网iot
目录第一阶段:基础知识储备第二阶段:核心技能模拟电路设计数字电路设计嵌入式系统开发系统优化和调试技巧第三阶段:专业化方向消费电子方向工业电子方向汽车电子方向第四阶段:进阶技能项目管理能力硬件可靠性设计产品认证与标准化技术文档管理团队协作与技术管理持续学习与创新第一阶段:基础知识储备在硬件工程领域,扎实的基础知识是一切深入学习的前提。数理基础不仅包括电磁学、高等数学和线性代数,还要掌握复变函数、概率
- 1.1函数、极限、连续
x峰峰
#数学考研数学极限
考研数学《函数、极限、连续》八大核心考点精讲引言函数、极限与连续是高等数学的基石,直接影响积分、微分方程等后续章节。本文从实战角度系统梳理8大核心考点,助你高效备考!考点一:函数的特性1️⃣单调性f′(x)≥0f'(x)\geq0f′(x)≥0(仅在孤点处取等号)⇒f(x)\Rightarrowf(x)⇒f(x)单调递增f′(x)≤0f'(x)\leq0f′(x)≤0(仅在孤点处取等号)⇒f(x)
- 数学:拉马努金如何想出计算圆周率的公式?
belldeep
算法科学家算法数学家
拉马努金(SrinivasaRamanujan)提出的圆周率(π)计算公式,源于他对数学模式的超凡直觉、对无穷级数和模形式的深刻洞察,以及独特的非传统数学思维方式。尽管他的思考过程带有强烈的个人色彩,甚至夹杂着神秘主义色彩,但可以从以下几个方面解析其可能的灵感来源:1.直觉与数学洞察力拉马努金自学成才,缺乏正规的高等数学训练,却对数学符号和级数有着惊人的直觉。他曾表示,许多公式是在梦中或冥想中“看
- 辞九门回忆
依旧天真无邪
Diary个人开发
2025年4月27日,13~30℃,挺好的待办:《高等数学2》期末试卷高数重修电子版材料冶金《物理》期末试卷《物理[2]》期末试卷批阅冶金《物理》作业→→统计平时成绩遇见:遇见一位小姐姐。感受或反思:不主动推动关系,是在等吗?还是在筛选?还是都不合适呢?给自己设定的期限是3个月。超过,可能就告辞啦,没有很多的时间。我会觉得可能需求不一样,没有双向奔赴的动力。而恰好双向奔赴这路才有意义。遇见:何警官
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL