resnet网络backbone代码解析

import torch.nn as nn
import torch.utils.model_zoo as model_zoo  #导入model_zoo,作用是根据下面的model_urls里的地址加载网络预训练权重。

# all变量定义了可以从外部import的函数名或类名。
# __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
#            'resnet152']

# model_urls这个字典是预训练模型的下载地址。
model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)

# 这里定义了最重要的残差模块,这个是基础版,由两个叠加的3x3卷积组成
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out
'''
这里是三个卷积,分别是1x1,3x3,1x1,分别用来压缩维度,卷积处理,恢复维度,
inplane是输入的通道数,plane是输出的通道数,expansion是对输出通道数的倍乘,
plane不再代表输出的通道数,而是block内部压缩后的通道数,输出通道数变为plane*expansion。
'''
class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        # element-wise add的操作。
        out += residual
        out = self.relu(out)

        return out

'''
resnet共有五个阶段,其中第一阶段为一个7x7的卷积处理,stride为2,然后经过池化
处理,此时特征图的尺寸已成为输入的1/4,接下来是四个阶段,也就是代码中的layer1,
layer2,layer3,layer4。这里用make_layer函数产生四个layer,需要用户输入每个
layer的block数目(即layers列表)以及采用的block类型(基础版还是bottleneck版)
'''
class ResNet(nn.Module):

    def __init__(self, block, layers, last_conv_stride=1, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        '''
        _make_layer第一个输入block是Bottleneck或BasicBlock类,第二个输入是该blocks的输出
        channel,第三个输入是每个blocks中包含多少个residual子结构,因此layers这个列表就是
        resnet50的[3, 4, 6, 3]。
        '''
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=last_conv_stride)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        # 该部分是将每个blocks的第一个residual结构保存在layers列表中。
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        # 该部分是将每个blocks的剩下residual 结构保存在layers列表中,这样就完成了一个blocks的构造。
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

"""
这里比较简单,就是调用上面ResNet对象,输入block类型和block数目,这里可以看到
resnet18和resnet34用的是基础版block,因为此时网络还不深,不太需要考虑模型的
效率,而当网络加深到52,101,152层时则有必要引入bottleneck结构,方便模型的
存储和计算。另外是否加载预训练权重是可选的,具体就是调用model_zoo加载指定链接
地址的序列化文件,反序列化为权重文件。
"""

def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


def resnet34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


def resnet50(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    # 构建网络结构
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    '''
    最后通过调用model的load_state_dict方法用预训练的模型参数来初始化你构建的
    网络结构,这个方法就是PyTorch中通用的用一个模型的参数初始化另一个模型的层
    的操作。load_state_dict方法还有一个重要的参数是strict,该参数默认是True,
    表示预训练模型的层和你的网络结构层严格对应相等(比如层名和维度)。最后通过
    调用model的load_state_dict方法用预训练的模型参数来初始化你构建的网络结构,
    这个方法就是PyTorch中通用的用一个模型的参数初始化另一个模型的层的操作。
    load_state_dict方法还有一个重要的参数是strict,该参数默认是True,表示
    预训练模型的层和你的网络结构层严格对应相等(比如层名和维度)。
    '''
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model


def resnet152(pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model

你可能感兴趣的:(Python)