驱动中suspend函数是如何被调用到的。

android系统摁下电源键后会让系统进入休眠以达到节电的目的。内核驱动中和休眠相关的就是suspend和resume函数。

suspend函数用于休眠,resume函数用于唤醒。下面分析驱动中的这两个函数是如何被调用到的。


驱动部分:

首先需要分析驱动的注册过程,较新的内核都是采用DTS方式来取代在内核中直接定义platform_device数据结构的注册方式,本文是基于DTS机制的内核来分析。


product对应的dts文件在编译时被编译为dtb文件,uboot在启动时候会将其地址传给内核,内核在启动过程中会去解析,具体解析是在start_kernel()->setup_arch() --> unflatten_device_tree()中具体分析可以参考网上,解析的最终结果会存放在allnodes地址处,这个allnodes随后在machine的init函数

中被使用,init函数中会根据allnodes中的节点数据组合成platform_device数据结构,然后将其注册到platform总线上,下面简要分析一下并重点关注这些初始化过程中和

pm相关的初始化。


我参与的项目中machine的init函数就是via_init_machine函数,在这个函数中就是调用了of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL)这个函数来解析allnodes的。of_platform_populate是系统提供的接口。下面分析这个接口的实现:

int of_platform_populate(struct device_node *root,
			const struct of_device_id *matches,
			const struct of_dev_auxdata *lookup,
			struct device *parent)
{
	struct device_node *child;
	int rc = 0;

	root = root ? of_node_get(root) : of_find_node_by_path("/");
	if (!root)
		return -EINVAL;

	for_each_child_of_node(root, child) {
		rc = of_platform_bus_create(child, matches, lookup, parent, true);
		if (rc)
			break;
	}

	of_node_put(root);
	return rc;
}

root最后就是取到的根节点,然后其作为参数传递给of_platform_bus_create,of_platform_device_create_pdata的实现如下:

static int of_platform_bus_create(struct device_node *bus,
				  const struct of_device_id *matches,
				  const struct of_dev_auxdata *lookup,
				  struct device *parent, bool strict)
{
	const struct of_dev_auxdata *auxdata;
	struct device_node *child;
	struct platform_device *dev;
	const char *bus_id = NULL;
	void *platform_data = NULL;
	int rc = 0;

	/* Make sure it has a compatible property */
	if (strict && (!of_get_property(bus, "compatible", NULL))) {
		pr_debug("%s() - skipping %s, no compatible prop\n",
			 __func__, bus->full_name);
		return 0;
	}

	auxdata = of_dev_lookup(lookup, bus);
	if (auxdata) {
		bus_id = auxdata->name;
		platform_data = auxdata->platform_data;
	}

	if (of_device_is_compatible(bus, "arm,primecell")) {
		of_amba_device_create(bus, bus_id, platform_data, parent);
		return 0;
	}

	dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
	if (!dev || !of_match_node(matches, bus))
		return 0;

	for_each_child_of_node(bus, child) {
		pr_debug("   create child: %s\n", child->full_name);
		rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);
		if (rc) {
			of_node_put(child);
			break;
		}
	}
	return rc;
}

根据传入参数,我们这里直接分析of_platform_device_create_padate函数,如下:

struct platform_device *of_platform_device_create_pdata(
					struct device_node *np,
					const char *bus_id,
					void *platform_data,
					struct device *parent)
{
	struct platform_device *dev;

	if (!of_device_is_available(np))
		return NULL;

	dev = of_device_alloc(np, bus_id, parent);
	if (!dev)
		return NULL;

#if defined(CONFIG_MICROBLAZE)
	dev->archdata.dma_mask = 0xffffffffUL;
#endif
	dev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
	dev->dev.bus = &platform_bus_type;
	dev->dev.platform_data = platform_data;

	/* We do not fill the DMA ops for platform devices by default.
	 * This is currently the responsibility of the platform code
	 * to do such, possibly using a device notifier
	 */

	if (of_device_add(dev) != 0) {
		platform_device_put(dev);
		return NULL;
	}

	return dev;
}

of_platform_device_create_padate->of_device_alloc->platform_device_alloc

便在platform_device_alloc函数中进行进行alloc和初始化了,实现如下:

struct platform_device *platform_device_alloc(const char *name, int id)
{
	struct platform_object *pa;

	pa = kzalloc(sizeof(struct platform_object) + strlen(name), GFP_KERNEL);
	if (pa) {
		strcpy(pa->name, name);
		pa->pdev.name = pa->name;
		pa->pdev.id = id;
		device_initialize(&pa->pdev.dev);
		pa->pdev.dev.release = platform_device_release;
		arch_setup_pdev_archdata(&pa->pdev);
	}

	return pa ? &pa->pdev : NULL; 
}
可以看到有个device_initialize,这里面对pdev.dev做一些列的初始化,其中有一个函数就是device_pm_init,这个函数就是我们一直关心的device相关的pm函数,具体实现如下:

void device_pm_init(struct device *dev)
{
	dev->power.is_prepared = false;
	dev->power.is_suspended = false;
	init_completion(&dev->power.completion);
	complete_all(&dev->power.completion);
	dev->power.wakeup = NULL;
	spin_lock_init(&dev->power.lock);
	pm_runtime_init(dev);
	INIT_LIST_HEAD(&dev->power.entry);
	dev->power.power_state = PMSG_INVALID;
}

可以看见它对device和功耗相关的数据做了一些初始化,我们这里先重点关注下dev->power.entry,初始化一个链表头,所以他/它很有可能会在后面加到某个链表里面去,而那个链表应该是用来保存所有的device用的。系统中所有的platform_device都是通过这种方式注册到系统中的,那么应该所有的platform_device都会初始化一个dev->power.entry,如果到时候把所有的dev->power.entry都添加到某个链表上去,那么系统到时候查询的时候只要找到这个list head就可以找到所有的platform_device了。嗯,不过这是我们的猜测。我们接下去分析来验证下。


platform_device通过alloc之后已经初始化好了,那么接下去就可以添加到系统中了,所以我们再回头看of_platform_device_create_pdata的实现。

函数在of_device_alloc之后把dev->dev.bus赋值给了platform_bus_type,接着就调用了of_device_add函数,在of_device_add函数中最后通过device_add添加到了bus上,但是device_add中有个函数需要我们关系,就是device_pm_add(dev),实现如下:


void device_pm_add(struct device *dev)
{
	pr_debug("PM: Adding info for %s:%s\n",
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
	mutex_lock(&dpm_list_mtx);
	if (dev->parent && dev->parent->power.is_prepared)
		dev_warn(dev, "parent %s should not be sleeping\n",
			dev_name(dev->parent));
	list_add_tail(&dev->power.entry, &dpm_list);
	dev_pm_qos_constraints_init(dev);
	mutex_unlock(&dpm_list_mtx);
}

可以看到这里 list_add_tail(&dev->power.entry, &dpm_list);这就验证了我们之前的猜测。所有注册到系统中的设备,最终都是会添加到dpm_list这条链表上。


那么系统在休眠的时候是如何通过dmp_list这表链表来suspend设备的呢?接下去就是我们要分析的电源管理部分内容。


系统电源部分:

电源管理相关文件在kernel/power目录下,前面已经分析到。系统中注册的设备都是会添加到dmp_list这条链表上的。那么睡眠的时候系统应该是会查找dmp_list这条链表,

然后通过这条链表依次去查到对应的driver,然后调用driver中的suspend方法。下面我们来验证。


2.在suspend会轮询bus下的driver,然后一次调用到driver->pm->suspend方法,然后进入休眠。

3.state_store->pm_suspend->enter_state->suspend_devices_and_enter->dpm_suspend_start->dpm_suspend->device_suspend->__device_suspend->pm_op->(ops->suspend)

暂时记录如下,以后再详细分析

你可能感兴趣的:(android电源管理)