Java多线程系列--“JUC线程池”03之 线程池原理(二)

 

概要

在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明。内容包括:
线程池示例
参考代码(基于JDK1.7.0_40)
线程池源码分析
    (一) 创建“线程池”
    (二) 添加任务到“线程池”
    (三) 关闭“线程池”

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509954.html

 

线程池示例

在分析线程池之前,先看一个简单的线程池示例。

 1 import java.util.concurrent.Executors;

 2 import java.util.concurrent.ExecutorService;

 3 

 4 public class ThreadPoolDemo1 {

 5 

 6     public static void main(String[] args) {

 7         // 创建一个可重用固定线程数的线程池

 8         ExecutorService pool = Executors.newFixedThreadPool(2);

 9         // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口

10         Thread ta = new MyThread();

11         Thread tb = new MyThread();

12         Thread tc = new MyThread();

13         Thread td = new MyThread();

14         Thread te = new MyThread();

15         // 将线程放入池中进行执行

16         pool.execute(ta);

17         pool.execute(tb);

18         pool.execute(tc);

19         pool.execute(td);

20         pool.execute(te);

21         // 关闭线程池

22         pool.shutdown();

23     }

24 }

25 

26 class MyThread extends Thread {

27 

28     @Override

29     public void run() {

30         System.out.println(Thread.currentThread().getName()+ " is running.");

31     }

32 }

运行结果

pool-1-thread-1 is running.

pool-1-thread-2 is running.

pool-1-thread-1 is running.

pool-1-thread-2 is running.

pool-1-thread-1 is running.

示例中,包括了线程池的创建,将任务添加到线程池中,关闭线程池这3个主要的步骤。稍后,我们会从这3个方面来分析ThreadPoolExecutor。

 

参考代码(基于JDK1.7.0_40)

Executors完整源码

Java多线程系列--“JUC线程池”03之 线程池原理(二)
  1 /*

  2  * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

  3  *

  4  *

  5  *

  6  *

  7  *

  8  *

  9  *

 10  *

 11  *

 12  *

 13  *

 14  *

 15  *

 16  *

 17  *

 18  *

 19  *

 20  *

 21  *

 22  *

 23  */

 24 

 25 /*

 26  *

 27  *

 28  *

 29  *

 30  *

 31  * Written by Doug Lea with assistance from members of JCP JSR-166

 32  * Expert Group and released to the public domain, as explained at

 33  * http://creativecommons.org/publicdomain/zero/1.0/

 34  */

 35 

 36 package java.util.concurrent;

 37 import java.util.*;

 38 import java.util.concurrent.atomic.AtomicInteger;

 39 import java.security.AccessControlContext;

 40 import java.security.AccessController;

 41 import java.security.PrivilegedAction;

 42 import java.security.PrivilegedExceptionAction;

 43 import java.security.PrivilegedActionException;

 44 import java.security.AccessControlException;

 45 import sun.security.util.SecurityConstants;

 46 

 47 /**

 48  * Factory and utility methods for {@link Executor}, {@link

 49  * ExecutorService}, {@link ScheduledExecutorService}, {@link

 50  * ThreadFactory}, and {@link Callable} classes defined in this

 51  * package. This class supports the following kinds of methods:

 52  *

 53  * <ul>

 54  *   <li> Methods that create and return an {@link ExecutorService}

 55  *        set up with commonly useful configuration settings.

 56  *   <li> Methods that create and return a {@link ScheduledExecutorService}

 57  *        set up with commonly useful configuration settings.

 58  *   <li> Methods that create and return a "wrapped" ExecutorService, that

 59  *        disables reconfiguration by making implementation-specific methods

 60  *        inaccessible.

 61  *   <li> Methods that create and return a {@link ThreadFactory}

 62  *        that sets newly created threads to a known state.

 63  *   <li> Methods that create and return a {@link Callable}

 64  *        out of other closure-like forms, so they can be used

 65  *        in execution methods requiring <tt>Callable</tt>.

 66  * </ul>

 67  *

 68  * @since 1.5

 69  * @author Doug Lea

 70  */

 71 public class Executors {

 72 

 73     /**

 74      * Creates a thread pool that reuses a fixed number of threads

 75      * operating off a shared unbounded queue.  At any point, at most

 76      * <tt>nThreads</tt> threads will be active processing tasks.

 77      * If additional tasks are submitted when all threads are active,

 78      * they will wait in the queue until a thread is available.

 79      * If any thread terminates due to a failure during execution

 80      * prior to shutdown, a new one will take its place if needed to

 81      * execute subsequent tasks.  The threads in the pool will exist

 82      * until it is explicitly {@link ExecutorService#shutdown shutdown}.

 83      *

 84      * @param nThreads the number of threads in the pool

 85      * @return the newly created thread pool

 86      * @throws IllegalArgumentException if {@code nThreads <= 0}

 87      */

 88     public static ExecutorService newFixedThreadPool(int nThreads) {

 89         return new ThreadPoolExecutor(nThreads, nThreads,

 90                                       0L, TimeUnit.MILLISECONDS,

 91                                       new LinkedBlockingQueue<Runnable>());

 92     }

 93 

 94     /**

 95      * Creates a thread pool that reuses a fixed number of threads

 96      * operating off a shared unbounded queue, using the provided

 97      * ThreadFactory to create new threads when needed.  At any point,

 98      * at most <tt>nThreads</tt> threads will be active processing

 99      * tasks.  If additional tasks are submitted when all threads are

100      * active, they will wait in the queue until a thread is

101      * available.  If any thread terminates due to a failure during

102      * execution prior to shutdown, a new one will take its place if

103      * needed to execute subsequent tasks.  The threads in the pool will

104      * exist until it is explicitly {@link ExecutorService#shutdown

105      * shutdown}.

106      *

107      * @param nThreads the number of threads in the pool

108      * @param threadFactory the factory to use when creating new threads

109      * @return the newly created thread pool

110      * @throws NullPointerException if threadFactory is null

111      * @throws IllegalArgumentException if {@code nThreads <= 0}

112      */

113     public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {

114         return new ThreadPoolExecutor(nThreads, nThreads,

115                                       0L, TimeUnit.MILLISECONDS,

116                                       new LinkedBlockingQueue<Runnable>(),

117                                       threadFactory);

118     }

119 

120     /**

121      * Creates an Executor that uses a single worker thread operating

122      * off an unbounded queue. (Note however that if this single

123      * thread terminates due to a failure during execution prior to

124      * shutdown, a new one will take its place if needed to execute

125      * subsequent tasks.)  Tasks are guaranteed to execute

126      * sequentially, and no more than one task will be active at any

127      * given time. Unlike the otherwise equivalent

128      * <tt>newFixedThreadPool(1)</tt> the returned executor is

129      * guaranteed not to be reconfigurable to use additional threads.

130      *

131      * @return the newly created single-threaded Executor

132      */

133     public static ExecutorService newSingleThreadExecutor() {

134         return new FinalizableDelegatedExecutorService

135             (new ThreadPoolExecutor(1, 1,

136                                     0L, TimeUnit.MILLISECONDS,

137                                     new LinkedBlockingQueue<Runnable>()));

138     }

139 

140     /**

141      * Creates an Executor that uses a single worker thread operating

142      * off an unbounded queue, and uses the provided ThreadFactory to

143      * create a new thread when needed. Unlike the otherwise

144      * equivalent <tt>newFixedThreadPool(1, threadFactory)</tt> the

145      * returned executor is guaranteed not to be reconfigurable to use

146      * additional threads.

147      *

148      * @param threadFactory the factory to use when creating new

149      * threads

150      *

151      * @return the newly created single-threaded Executor

152      * @throws NullPointerException if threadFactory is null

153      */

154     public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {

155         return new FinalizableDelegatedExecutorService

156             (new ThreadPoolExecutor(1, 1,

157                                     0L, TimeUnit.MILLISECONDS,

158                                     new LinkedBlockingQueue<Runnable>(),

159                                     threadFactory));

160     }

161 

162     /**

163      * Creates a thread pool that creates new threads as needed, but

164      * will reuse previously constructed threads when they are

165      * available.  These pools will typically improve the performance

166      * of programs that execute many short-lived asynchronous tasks.

167      * Calls to <tt>execute</tt> will reuse previously constructed

168      * threads if available. If no existing thread is available, a new

169      * thread will be created and added to the pool. Threads that have

170      * not been used for sixty seconds are terminated and removed from

171      * the cache. Thus, a pool that remains idle for long enough will

172      * not consume any resources. Note that pools with similar

173      * properties but different details (for example, timeout parameters)

174      * may be created using {@link ThreadPoolExecutor} constructors.

175      *

176      * @return the newly created thread pool

177      */

178     public static ExecutorService newCachedThreadPool() {

179         return new ThreadPoolExecutor(0, Integer.MAX_VALUE,

180                                       60L, TimeUnit.SECONDS,

181                                       new SynchronousQueue<Runnable>());

182     }

183 

184     /**

185      * Creates a thread pool that creates new threads as needed, but

186      * will reuse previously constructed threads when they are

187      * available, and uses the provided

188      * ThreadFactory to create new threads when needed.

189      * @param threadFactory the factory to use when creating new threads

190      * @return the newly created thread pool

191      * @throws NullPointerException if threadFactory is null

192      */

193     public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {

194         return new ThreadPoolExecutor(0, Integer.MAX_VALUE,

195                                       60L, TimeUnit.SECONDS,

196                                       new SynchronousQueue<Runnable>(),

197                                       threadFactory);

198     }

199 

200     /**

201      * Creates a single-threaded executor that can schedule commands

202      * to run after a given delay, or to execute periodically.

203      * (Note however that if this single

204      * thread terminates due to a failure during execution prior to

205      * shutdown, a new one will take its place if needed to execute

206      * subsequent tasks.)  Tasks are guaranteed to execute

207      * sequentially, and no more than one task will be active at any

208      * given time. Unlike the otherwise equivalent

209      * <tt>newScheduledThreadPool(1)</tt> the returned executor is

210      * guaranteed not to be reconfigurable to use additional threads.

211      * @return the newly created scheduled executor

212      */

213     public static ScheduledExecutorService newSingleThreadScheduledExecutor() {

214         return new DelegatedScheduledExecutorService

215             (new ScheduledThreadPoolExecutor(1));

216     }

217 

218     /**

219      * Creates a single-threaded executor that can schedule commands

220      * to run after a given delay, or to execute periodically.  (Note

221      * however that if this single thread terminates due to a failure

222      * during execution prior to shutdown, a new one will take its

223      * place if needed to execute subsequent tasks.)  Tasks are

224      * guaranteed to execute sequentially, and no more than one task

225      * will be active at any given time. Unlike the otherwise

226      * equivalent <tt>newScheduledThreadPool(1, threadFactory)</tt>

227      * the returned executor is guaranteed not to be reconfigurable to

228      * use additional threads.

229      * @param threadFactory the factory to use when creating new

230      * threads

231      * @return a newly created scheduled executor

232      * @throws NullPointerException if threadFactory is null

233      */

234     public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {

235         return new DelegatedScheduledExecutorService

236             (new ScheduledThreadPoolExecutor(1, threadFactory));

237     }

238 

239     /**

240      * Creates a thread pool that can schedule commands to run after a

241      * given delay, or to execute periodically.

242      * @param corePoolSize the number of threads to keep in the pool,

243      * even if they are idle.

244      * @return a newly created scheduled thread pool

245      * @throws IllegalArgumentException if {@code corePoolSize < 0}

246      */

247     public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {

248         return new ScheduledThreadPoolExecutor(corePoolSize);

249     }

250 

251     /**

252      * Creates a thread pool that can schedule commands to run after a

253      * given delay, or to execute periodically.

254      * @param corePoolSize the number of threads to keep in the pool,

255      * even if they are idle.

256      * @param threadFactory the factory to use when the executor

257      * creates a new thread.

258      * @return a newly created scheduled thread pool

259      * @throws IllegalArgumentException if {@code corePoolSize < 0}

260      * @throws NullPointerException if threadFactory is null

261      */

262     public static ScheduledExecutorService newScheduledThreadPool(

263             int corePoolSize, ThreadFactory threadFactory) {

264         return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);

265     }

266 

267 

268     /**

269      * Returns an object that delegates all defined {@link

270      * ExecutorService} methods to the given executor, but not any

271      * other methods that might otherwise be accessible using

272      * casts. This provides a way to safely "freeze" configuration and

273      * disallow tuning of a given concrete implementation.

274      * @param executor the underlying implementation

275      * @return an <tt>ExecutorService</tt> instance

276      * @throws NullPointerException if executor null

277      */

278     public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {

279         if (executor == null)

280             throw new NullPointerException();

281         return new DelegatedExecutorService(executor);

282     }

283 

284     /**

285      * Returns an object that delegates all defined {@link

286      * ScheduledExecutorService} methods to the given executor, but

287      * not any other methods that might otherwise be accessible using

288      * casts. This provides a way to safely "freeze" configuration and

289      * disallow tuning of a given concrete implementation.

290      * @param executor the underlying implementation

291      * @return a <tt>ScheduledExecutorService</tt> instance

292      * @throws NullPointerException if executor null

293      */

294     public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {

295         if (executor == null)

296             throw new NullPointerException();

297         return new DelegatedScheduledExecutorService(executor);

298     }

299 

300     /**

301      * Returns a default thread factory used to create new threads.

302      * This factory creates all new threads used by an Executor in the

303      * same {@link ThreadGroup}. If there is a {@link

304      * java.lang.SecurityManager}, it uses the group of {@link

305      * System#getSecurityManager}, else the group of the thread

306      * invoking this <tt>defaultThreadFactory</tt> method. Each new

307      * thread is created as a non-daemon thread with priority set to

308      * the smaller of <tt>Thread.NORM_PRIORITY</tt> and the maximum

309      * priority permitted in the thread group.  New threads have names

310      * accessible via {@link Thread#getName} of

311      * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence

312      * number of this factory, and <em>M</em> is the sequence number

313      * of the thread created by this factory.

314      * @return a thread factory

315      */

316     public static ThreadFactory defaultThreadFactory() {

317         return new DefaultThreadFactory();

318     }

319 

320     /**

321      * Returns a thread factory used to create new threads that

322      * have the same permissions as the current thread.

323      * This factory creates threads with the same settings as {@link

324      * Executors#defaultThreadFactory}, additionally setting the

325      * AccessControlContext and contextClassLoader of new threads to

326      * be the same as the thread invoking this

327      * <tt>privilegedThreadFactory</tt> method.  A new

328      * <tt>privilegedThreadFactory</tt> can be created within an

329      * {@link AccessController#doPrivileged} action setting the

330      * current thread's access control context to create threads with

331      * the selected permission settings holding within that action.

332      *

333      * <p> Note that while tasks running within such threads will have

334      * the same access control and class loader settings as the

335      * current thread, they need not have the same {@link

336      * java.lang.ThreadLocal} or {@link

337      * java.lang.InheritableThreadLocal} values. If necessary,

338      * particular values of thread locals can be set or reset before

339      * any task runs in {@link ThreadPoolExecutor} subclasses using

340      * {@link ThreadPoolExecutor#beforeExecute}. Also, if it is

341      * necessary to initialize worker threads to have the same

342      * InheritableThreadLocal settings as some other designated

343      * thread, you can create a custom ThreadFactory in which that

344      * thread waits for and services requests to create others that

345      * will inherit its values.

346      *

347      * @return a thread factory

348      * @throws AccessControlException if the current access control

349      * context does not have permission to both get and set context

350      * class loader.

351      */

352     public static ThreadFactory privilegedThreadFactory() {

353         return new PrivilegedThreadFactory();

354     }

355 

356     /**

357      * Returns a {@link Callable} object that, when

358      * called, runs the given task and returns the given result.  This

359      * can be useful when applying methods requiring a

360      * <tt>Callable</tt> to an otherwise resultless action.

361      * @param task the task to run

362      * @param result the result to return

363      * @return a callable object

364      * @throws NullPointerException if task null

365      */

366     public static <T> Callable<T> callable(Runnable task, T result) {

367         if (task == null)

368             throw new NullPointerException();

369         return new RunnableAdapter<T>(task, result);

370     }

371 

372     /**

373      * Returns a {@link Callable} object that, when

374      * called, runs the given task and returns <tt>null</tt>.

375      * @param task the task to run

376      * @return a callable object

377      * @throws NullPointerException if task null

378      */

379     public static Callable<Object> callable(Runnable task) {

380         if (task == null)

381             throw new NullPointerException();

382         return new RunnableAdapter<Object>(task, null);

383     }

384 

385     /**

386      * Returns a {@link Callable} object that, when

387      * called, runs the given privileged action and returns its result.

388      * @param action the privileged action to run

389      * @return a callable object

390      * @throws NullPointerException if action null

391      */

392     public static Callable<Object> callable(final PrivilegedAction<?> action) {

393         if (action == null)

394             throw new NullPointerException();

395         return new Callable<Object>() {

396             public Object call() { return action.run(); }};

397     }

398 

399     /**

400      * Returns a {@link Callable} object that, when

401      * called, runs the given privileged exception action and returns

402      * its result.

403      * @param action the privileged exception action to run

404      * @return a callable object

405      * @throws NullPointerException if action null

406      */

407     public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) {

408         if (action == null)

409             throw new NullPointerException();

410         return new Callable<Object>() {

411             public Object call() throws Exception { return action.run(); }};

412     }

413 

414     /**

415      * Returns a {@link Callable} object that will, when

416      * called, execute the given <tt>callable</tt> under the current

417      * access control context. This method should normally be

418      * invoked within an {@link AccessController#doPrivileged} action

419      * to create callables that will, if possible, execute under the

420      * selected permission settings holding within that action; or if

421      * not possible, throw an associated {@link

422      * AccessControlException}.

423      * @param callable the underlying task

424      * @return a callable object

425      * @throws NullPointerException if callable null

426      *

427      */

428     public static <T> Callable<T> privilegedCallable(Callable<T> callable) {

429         if (callable == null)

430             throw new NullPointerException();

431         return new PrivilegedCallable<T>(callable);

432     }

433 

434     /**

435      * Returns a {@link Callable} object that will, when

436      * called, execute the given <tt>callable</tt> under the current

437      * access control context, with the current context class loader

438      * as the context class loader. This method should normally be

439      * invoked within an {@link AccessController#doPrivileged} action

440      * to create callables that will, if possible, execute under the

441      * selected permission settings holding within that action; or if

442      * not possible, throw an associated {@link

443      * AccessControlException}.

444      * @param callable the underlying task

445      *

446      * @return a callable object

447      * @throws NullPointerException if callable null

448      * @throws AccessControlException if the current access control

449      * context does not have permission to both set and get context

450      * class loader.

451      */

452     public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) {

453         if (callable == null)

454             throw new NullPointerException();

455         return new PrivilegedCallableUsingCurrentClassLoader<T>(callable);

456     }

457 

458     // Non-public classes supporting the public methods

459 

460     /**

461      * A callable that runs given task and returns given result

462      */

463     static final class RunnableAdapter<T> implements Callable<T> {

464         final Runnable task;

465         final T result;

466         RunnableAdapter(Runnable task, T result) {

467             this.task = task;

468             this.result = result;

469         }

470         public T call() {

471             task.run();

472             return result;

473         }

474     }

475 

476     /**

477      * A callable that runs under established access control settings

478      */

479     static final class PrivilegedCallable<T> implements Callable<T> {

480         private final Callable<T> task;

481         private final AccessControlContext acc;

482 

483         PrivilegedCallable(Callable<T> task) {

484             this.task = task;

485             this.acc = AccessController.getContext();

486         }

487 

488         public T call() throws Exception {

489             try {

490                 return AccessController.doPrivileged(

491                     new PrivilegedExceptionAction<T>() {

492                         public T run() throws Exception {

493                             return task.call();

494                         }

495                     }, acc);

496             } catch (PrivilegedActionException e) {

497                 throw e.getException();

498             }

499         }

500     }

501 

502     /**

503      * A callable that runs under established access control settings and

504      * current ClassLoader

505      */

506     static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> {

507         private final Callable<T> task;

508         private final AccessControlContext acc;

509         private final ClassLoader ccl;

510 

511         PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {

512             SecurityManager sm = System.getSecurityManager();

513             if (sm != null) {

514                 // Calls to getContextClassLoader from this class

515                 // never trigger a security check, but we check

516                 // whether our callers have this permission anyways.

517                 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);

518 

519                 // Whether setContextClassLoader turns out to be necessary

520                 // or not, we fail fast if permission is not available.

521                 sm.checkPermission(new RuntimePermission("setContextClassLoader"));

522             }

523             this.task = task;

524             this.acc = AccessController.getContext();

525             this.ccl = Thread.currentThread().getContextClassLoader();

526         }

527 

528         public T call() throws Exception {

529             try {

530                 return AccessController.doPrivileged(

531                     new PrivilegedExceptionAction<T>() {

532                         public T run() throws Exception {

533                             Thread t = Thread.currentThread();

534                             ClassLoader cl = t.getContextClassLoader();

535                             if (ccl == cl) {

536                                 return task.call();

537                             } else {

538                                 t.setContextClassLoader(ccl);

539                                 try {

540                                     return task.call();

541                                 } finally {

542                                     t.setContextClassLoader(cl);

543                                 }

544                             }

545                         }

546                     }, acc);

547             } catch (PrivilegedActionException e) {

548                 throw e.getException();

549             }

550         }

551     }

552 

553     /**

554      * The default thread factory

555      */

556     static class DefaultThreadFactory implements ThreadFactory {

557         private static final AtomicInteger poolNumber = new AtomicInteger(1);

558         private final ThreadGroup group;

559         private final AtomicInteger threadNumber = new AtomicInteger(1);

560         private final String namePrefix;

561 

562         DefaultThreadFactory() {

563             SecurityManager s = System.getSecurityManager();

564             group = (s != null) ? s.getThreadGroup() :

565                                   Thread.currentThread().getThreadGroup();

566             namePrefix = "pool-" +

567                           poolNumber.getAndIncrement() +

568                          "-thread-";

569         }

570 

571         public Thread newThread(Runnable r) {

572             Thread t = new Thread(group, r,

573                                   namePrefix + threadNumber.getAndIncrement(),

574                                   0);

575             if (t.isDaemon())

576                 t.setDaemon(false);

577             if (t.getPriority() != Thread.NORM_PRIORITY)

578                 t.setPriority(Thread.NORM_PRIORITY);

579             return t;

580         }

581     }

582 

583     /**

584      * Thread factory capturing access control context and class loader

585      */

586     static class PrivilegedThreadFactory extends DefaultThreadFactory {

587         private final AccessControlContext acc;

588         private final ClassLoader ccl;

589 

590         PrivilegedThreadFactory() {

591             super();

592             SecurityManager sm = System.getSecurityManager();

593             if (sm != null) {

594                 // Calls to getContextClassLoader from this class

595                 // never trigger a security check, but we check

596                 // whether our callers have this permission anyways.

597                 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);

598 

599                 // Fail fast

600                 sm.checkPermission(new RuntimePermission("setContextClassLoader"));

601             }

602             this.acc = AccessController.getContext();

603             this.ccl = Thread.currentThread().getContextClassLoader();

604         }

605 

606         public Thread newThread(final Runnable r) {

607             return super.newThread(new Runnable() {

608                 public void run() {

609                     AccessController.doPrivileged(new PrivilegedAction<Void>() {

610                         public Void run() {

611                             Thread.currentThread().setContextClassLoader(ccl);

612                             r.run();

613                             return null;

614                         }

615                     }, acc);

616                 }

617             });

618         }

619     }

620 

621     /**

622      * A wrapper class that exposes only the ExecutorService methods

623      * of an ExecutorService implementation.

624      */

625     static class DelegatedExecutorService extends AbstractExecutorService {

626         private final ExecutorService e;

627         DelegatedExecutorService(ExecutorService executor) { e = executor; }

628         public void execute(Runnable command) { e.execute(command); }

629         public void shutdown() { e.shutdown(); }

630         public List<Runnable> shutdownNow() { return e.shutdownNow(); }

631         public boolean isShutdown() { return e.isShutdown(); }

632         public boolean isTerminated() { return e.isTerminated(); }

633         public boolean awaitTermination(long timeout, TimeUnit unit)

634             throws InterruptedException {

635             return e.awaitTermination(timeout, unit);

636         }

637         public Future<?> submit(Runnable task) {

638             return e.submit(task);

639         }

640         public <T> Future<T> submit(Callable<T> task) {

641             return e.submit(task);

642         }

643         public <T> Future<T> submit(Runnable task, T result) {

644             return e.submit(task, result);

645         }

646         public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)

647             throws InterruptedException {

648             return e.invokeAll(tasks);

649         }

650         public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,

651                                              long timeout, TimeUnit unit)

652             throws InterruptedException {

653             return e.invokeAll(tasks, timeout, unit);

654         }

655         public <T> T invokeAny(Collection<? extends Callable<T>> tasks)

656             throws InterruptedException, ExecutionException {

657             return e.invokeAny(tasks);

658         }

659         public <T> T invokeAny(Collection<? extends Callable<T>> tasks,

660                                long timeout, TimeUnit unit)

661             throws InterruptedException, ExecutionException, TimeoutException {

662             return e.invokeAny(tasks, timeout, unit);

663         }

664     }

665 

666     static class FinalizableDelegatedExecutorService

667         extends DelegatedExecutorService {

668         FinalizableDelegatedExecutorService(ExecutorService executor) {

669             super(executor);

670         }

671         protected void finalize() {

672             super.shutdown();

673         }

674     }

675 

676     /**

677      * A wrapper class that exposes only the ScheduledExecutorService

678      * methods of a ScheduledExecutorService implementation.

679      */

680     static class DelegatedScheduledExecutorService

681             extends DelegatedExecutorService

682             implements ScheduledExecutorService {

683         private final ScheduledExecutorService e;

684         DelegatedScheduledExecutorService(ScheduledExecutorService executor) {

685             super(executor);

686             e = executor;

687         }

688         public ScheduledFuture<?> schedule(Runnable command, long delay,  TimeUnit unit) {

689             return e.schedule(command, delay, unit);

690         }

691         public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {

692             return e.schedule(callable, delay, unit);

693         }

694         public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,  long period, TimeUnit unit) {

695             return e.scheduleAtFixedRate(command, initialDelay, period, unit);

696         }

697         public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,  long delay, TimeUnit unit) {

698             return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);

699         }

700     }

701 

702 

703     /** Cannot instantiate. */

704     private Executors() {}

705 }
View Code

 

ThreadPoolExecutor完整源码

Java多线程系列--“JUC线程池”03之 线程池原理(二)
   1 /*

   2  * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

   3  *

   4  *

   5  *

   6  *

   7  *

   8  *

   9  *

  10  *

  11  *

  12  *

  13  *

  14  *

  15  *

  16  *

  17  *

  18  *

  19  *

  20  *

  21  *

  22  *

  23  */

  24 

  25 /*

  26  *

  27  *

  28  *

  29  *

  30  *

  31  * Written by Doug Lea with assistance from members of JCP JSR-166

  32  * Expert Group and released to the public domain, as explained at

  33  * http://creativecommons.org/publicdomain/zero/1.0/

  34  */

  35 

  36 package java.util.concurrent;

  37 import java.util.concurrent.locks.AbstractQueuedSynchronizer;

  38 import java.util.concurrent.locks.Condition;

  39 import java.util.concurrent.locks.ReentrantLock;

  40 import java.util.concurrent.atomic.AtomicInteger;

  41 import java.util.*;

  42 

  43 /**

  44  * An {@link ExecutorService} that executes each submitted task using

  45  * one of possibly several pooled threads, normally configured

  46  * using {@link Executors} factory methods.

  47  *

  48  * <p>Thread pools address two different problems: they usually

  49  * provide improved performance when executing large numbers of

  50  * asynchronous tasks, due to reduced per-task invocation overhead,

  51  * and they provide a means of bounding and managing the resources,

  52  * including threads, consumed when executing a collection of tasks.

  53  * Each {@code ThreadPoolExecutor} also maintains some basic

  54  * statistics, such as the number of completed tasks.

  55  *

  56  * <p>To be useful across a wide range of contexts, this class

  57  * provides many adjustable parameters and extensibility

  58  * hooks. However, programmers are urged to use the more convenient

  59  * {@link Executors} factory methods {@link

  60  * Executors#newCachedThreadPool} (unbounded thread pool, with

  61  * automatic thread reclamation), {@link Executors#newFixedThreadPool}

  62  * (fixed size thread pool) and {@link

  63  * Executors#newSingleThreadExecutor} (single background thread), that

  64  * preconfigure settings for the most common usage

  65  * scenarios. Otherwise, use the following guide when manually

  66  * configuring and tuning this class:

  67  *

  68  * <dl>

  69  *

  70  * <dt>Core and maximum pool sizes</dt>

  71  *

  72  * <dd>A {@code ThreadPoolExecutor} will automatically adjust the

  73  * pool size (see {@link #getPoolSize})

  74  * according to the bounds set by

  75  * corePoolSize (see {@link #getCorePoolSize}) and

  76  * maximumPoolSize (see {@link #getMaximumPoolSize}).

  77  *

  78  * When a new task is submitted in method {@link #execute}, and fewer

  79  * than corePoolSize threads are running, a new thread is created to

  80  * handle the request, even if other worker threads are idle.  If

  81  * there are more than corePoolSize but less than maximumPoolSize

  82  * threads running, a new thread will be created only if the queue is

  83  * full.  By setting corePoolSize and maximumPoolSize the same, you

  84  * create a fixed-size thread pool. By setting maximumPoolSize to an

  85  * essentially unbounded value such as {@code Integer.MAX_VALUE}, you

  86  * allow the pool to accommodate an arbitrary number of concurrent

  87  * tasks. Most typically, core and maximum pool sizes are set only

  88  * upon construction, but they may also be changed dynamically using

  89  * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>

  90  *

  91  * <dt>On-demand construction</dt>

  92  *

  93  * <dd> By default, even core threads are initially created and

  94  * started only when new tasks arrive, but this can be overridden

  95  * dynamically using method {@link #prestartCoreThread} or {@link

  96  * #prestartAllCoreThreads}.  You probably want to prestart threads if

  97  * you construct the pool with a non-empty queue. </dd>

  98  *

  99  * <dt>Creating new threads</dt>

 100  *

 101  * <dd>New threads are created using a {@link ThreadFactory}.  If not

 102  * otherwise specified, a {@link Executors#defaultThreadFactory} is

 103  * used, that creates threads to all be in the same {@link

 104  * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and

 105  * non-daemon status. By supplying a different ThreadFactory, you can

 106  * alter the thread's name, thread group, priority, daemon status,

 107  * etc. If a {@code ThreadFactory} fails to create a thread when asked

 108  * by returning null from {@code newThread}, the executor will

 109  * continue, but might not be able to execute any tasks. Threads

 110  * should possess the "modifyThread" {@code RuntimePermission}. If

 111  * worker threads or other threads using the pool do not possess this

 112  * permission, service may be degraded: configuration changes may not

 113  * take effect in a timely manner, and a shutdown pool may remain in a

 114  * state in which termination is possible but not completed.</dd>

 115  *

 116  * <dt>Keep-alive times</dt>

 117  *

 118  * <dd>If the pool currently has more than corePoolSize threads,

 119  * excess threads will be terminated if they have been idle for more

 120  * than the keepAliveTime (see {@link #getKeepAliveTime}). This

 121  * provides a means of reducing resource consumption when the pool is

 122  * not being actively used. If the pool becomes more active later, new

 123  * threads will be constructed. This parameter can also be changed

 124  * dynamically using method {@link #setKeepAliveTime}. Using a value

 125  * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively

 126  * disables idle threads from ever terminating prior to shut down. By

 127  * default, the keep-alive policy applies only when there are more

 128  * than corePoolSizeThreads. But method {@link

 129  * #allowCoreThreadTimeOut(boolean)} can be used to apply this

 130  * time-out policy to core threads as well, so long as the

 131  * keepAliveTime value is non-zero. </dd>

 132  *

 133  * <dt>Queuing</dt>

 134  *

 135  * <dd>Any {@link BlockingQueue} may be used to transfer and hold

 136  * submitted tasks.  The use of this queue interacts with pool sizing:

 137  *

 138  * <ul>

 139  *

 140  * <li> If fewer than corePoolSize threads are running, the Executor

 141  * always prefers adding a new thread

 142  * rather than queuing.</li>

 143  *

 144  * <li> If corePoolSize or more threads are running, the Executor

 145  * always prefers queuing a request rather than adding a new

 146  * thread.</li>

 147  *

 148  * <li> If a request cannot be queued, a new thread is created unless

 149  * this would exceed maximumPoolSize, in which case, the task will be

 150  * rejected.</li>

 151  *

 152  * </ul>

 153  *

 154  * There are three general strategies for queuing:

 155  * <ol>

 156  *

 157  * <li> <em> Direct handoffs.</em> A good default choice for a work

 158  * queue is a {@link SynchronousQueue} that hands off tasks to threads

 159  * without otherwise holding them. Here, an attempt to queue a task

 160  * will fail if no threads are immediately available to run it, so a

 161  * new thread will be constructed. This policy avoids lockups when

 162  * handling sets of requests that might have internal dependencies.

 163  * Direct handoffs generally require unbounded maximumPoolSizes to

 164  * avoid rejection of new submitted tasks. This in turn admits the

 165  * possibility of unbounded thread growth when commands continue to

 166  * arrive on average faster than they can be processed.  </li>

 167  *

 168  * <li><em> Unbounded queues.</em> Using an unbounded queue (for

 169  * example a {@link LinkedBlockingQueue} without a predefined

 170  * capacity) will cause new tasks to wait in the queue when all

 171  * corePoolSize threads are busy. Thus, no more than corePoolSize

 172  * threads will ever be created. (And the value of the maximumPoolSize

 173  * therefore doesn't have any effect.)  This may be appropriate when

 174  * each task is completely independent of others, so tasks cannot

 175  * affect each others execution; for example, in a web page server.

 176  * While this style of queuing can be useful in smoothing out

 177  * transient bursts of requests, it admits the possibility of

 178  * unbounded work queue growth when commands continue to arrive on

 179  * average faster than they can be processed.  </li>

 180  *

 181  * <li><em>Bounded queues.</em> A bounded queue (for example, an

 182  * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when

 183  * used with finite maximumPoolSizes, but can be more difficult to

 184  * tune and control.  Queue sizes and maximum pool sizes may be traded

 185  * off for each other: Using large queues and small pools minimizes

 186  * CPU usage, OS resources, and context-switching overhead, but can

 187  * lead to artificially low throughput.  If tasks frequently block (for

 188  * example if they are I/O bound), a system may be able to schedule

 189  * time for more threads than you otherwise allow. Use of small queues

 190  * generally requires larger pool sizes, which keeps CPUs busier but

 191  * may encounter unacceptable scheduling overhead, which also

 192  * decreases throughput.  </li>

 193  *

 194  * </ol>

 195  *

 196  * </dd>

 197  *

 198  * <dt>Rejected tasks</dt>

 199  *

 200  * <dd> New tasks submitted in method {@link #execute} will be

 201  * <em>rejected</em> when the Executor has been shut down, and also

 202  * when the Executor uses finite bounds for both maximum threads and

 203  * work queue capacity, and is saturated.  In either case, the {@code

 204  * execute} method invokes the {@link

 205  * RejectedExecutionHandler#rejectedExecution} method of its {@link

 206  * RejectedExecutionHandler}.  Four predefined handler policies are

 207  * provided:

 208  *

 209  * <ol>

 210  *

 211  * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the

 212  * handler throws a runtime {@link RejectedExecutionException} upon

 213  * rejection. </li>

 214  *

 215  * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread

 216  * that invokes {@code execute} itself runs the task. This provides a

 217  * simple feedback control mechanism that will slow down the rate that

 218  * new tasks are submitted. </li>

 219  *

 220  * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that

 221  * cannot be executed is simply dropped.  </li>

 222  *

 223  * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the

 224  * executor is not shut down, the task at the head of the work queue

 225  * is dropped, and then execution is retried (which can fail again,

 226  * causing this to be repeated.) </li>

 227  *

 228  * </ol>

 229  *

 230  * It is possible to define and use other kinds of {@link

 231  * RejectedExecutionHandler} classes. Doing so requires some care

 232  * especially when policies are designed to work only under particular

 233  * capacity or queuing policies. </dd>

 234  *

 235  * <dt>Hook methods</dt>

 236  *

 237  * <dd>This class provides {@code protected} overridable {@link

 238  * #beforeExecute} and {@link #afterExecute} methods that are called

 239  * before and after execution of each task.  These can be used to

 240  * manipulate the execution environment; for example, reinitializing

 241  * ThreadLocals, gathering statistics, or adding log

 242  * entries. Additionally, method {@link #terminated} can be overridden

 243  * to perform any special processing that needs to be done once the

 244  * Executor has fully terminated.

 245  *

 246  * <p>If hook or callback methods throw exceptions, internal worker

 247  * threads may in turn fail and abruptly terminate.</dd>

 248  *

 249  * <dt>Queue maintenance</dt>

 250  *

 251  * <dd> Method {@link #getQueue} allows access to the work queue for

 252  * purposes of monitoring and debugging.  Use of this method for any

 253  * other purpose is strongly discouraged.  Two supplied methods,

 254  * {@link #remove} and {@link #purge} are available to assist in

 255  * storage reclamation when large numbers of queued tasks become

 256  * cancelled.</dd>

 257  *

 258  * <dt>Finalization</dt>

 259  *

 260  * <dd> A pool that is no longer referenced in a program <em>AND</em>

 261  * has no remaining threads will be {@code shutdown} automatically. If

 262  * you would like to ensure that unreferenced pools are reclaimed even

 263  * if users forget to call {@link #shutdown}, then you must arrange

 264  * that unused threads eventually die, by setting appropriate

 265  * keep-alive times, using a lower bound of zero core threads and/or

 266  * setting {@link #allowCoreThreadTimeOut(boolean)}.  </dd>

 267  *

 268  * </dl>

 269  *

 270  * <p> <b>Extension example</b>. Most extensions of this class

 271  * override one or more of the protected hook methods. For example,

 272  * here is a subclass that adds a simple pause/resume feature:

 273  *

 274  *  <pre> {@code

 275  * class PausableThreadPoolExecutor extends ThreadPoolExecutor {

 276  *   private boolean isPaused;

 277  *   private ReentrantLock pauseLock = new ReentrantLock();

 278  *   private Condition unpaused = pauseLock.newCondition();

 279  *

 280  *   public PausableThreadPoolExecutor(...) { super(...); }

 281  *

 282  *   protected void beforeExecute(Thread t, Runnable r) {

 283  *     super.beforeExecute(t, r);

 284  *     pauseLock.lock();

 285  *     try {

 286  *       while (isPaused) unpaused.await();

 287  *     } catch (InterruptedException ie) {

 288  *       t.interrupt();

 289  *     } finally {

 290  *       pauseLock.unlock();

 291  *     }

 292  *   }

 293  *

 294  *   public void pause() {

 295  *     pauseLock.lock();

 296  *     try {

 297  *       isPaused = true;

 298  *     } finally {

 299  *       pauseLock.unlock();

 300  *     }

 301  *   }

 302  *

 303  *   public void resume() {

 304  *     pauseLock.lock();

 305  *     try {

 306  *       isPaused = false;

 307  *       unpaused.signalAll();

 308  *     } finally {

 309  *       pauseLock.unlock();

 310  *     }

 311  *   }

 312  * }}</pre>

 313  *

 314  * @since 1.5

 315  * @author Doug Lea

 316  */

 317 public class ThreadPoolExecutor extends AbstractExecutorService {

 318     /**

 319      * The main pool control state, ctl, is an atomic integer packing

 320      * two conceptual fields

 321      *   workerCount, indicating the effective number of threads

 322      *   runState,    indicating whether running, shutting down etc

 323      *

 324      * In order to pack them into one int, we limit workerCount to

 325      * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2

 326      * billion) otherwise representable. If this is ever an issue in

 327      * the future, the variable can be changed to be an AtomicLong,

 328      * and the shift/mask constants below adjusted. But until the need

 329      * arises, this code is a bit faster and simpler using an int.

 330      *

 331      * The workerCount is the number of workers that have been

 332      * permitted to start and not permitted to stop.  The value may be

 333      * transiently different from the actual number of live threads,

 334      * for example when a ThreadFactory fails to create a thread when

 335      * asked, and when exiting threads are still performing

 336      * bookkeeping before terminating. The user-visible pool size is

 337      * reported as the current size of the workers set.

 338      *

 339      * The runState provides the main lifecyle control, taking on values:

 340      *

 341      *   RUNNING:  Accept new tasks and process queued tasks

 342      *   SHUTDOWN: Don't accept new tasks, but process queued tasks

 343      *   STOP:     Don't accept new tasks, don't process queued tasks,

 344      *             and interrupt in-progress tasks

 345      *   TIDYING:  All tasks have terminated, workerCount is zero,

 346      *             the thread transitioning to state TIDYING

 347      *             will run the terminated() hook method

 348      *   TERMINATED: terminated() has completed

 349      *

 350      * The numerical order among these values matters, to allow

 351      * ordered comparisons. The runState monotonically increases over

 352      * time, but need not hit each state. The transitions are:

 353      *

 354      * RUNNING -> SHUTDOWN

 355      *    On invocation of shutdown(), perhaps implicitly in finalize()

 356      * (RUNNING or SHUTDOWN) -> STOP

 357      *    On invocation of shutdownNow()

 358      * SHUTDOWN -> TIDYING

 359      *    When both queue and pool are empty

 360      * STOP -> TIDYING

 361      *    When pool is empty

 362      * TIDYING -> TERMINATED

 363      *    When the terminated() hook method has completed

 364      *

 365      * Threads waiting in awaitTermination() will return when the

 366      * state reaches TERMINATED.

 367      *

 368      * Detecting the transition from SHUTDOWN to TIDYING is less

 369      * straightforward than you'd like because the queue may become

 370      * empty after non-empty and vice versa during SHUTDOWN state, but

 371      * we can only terminate if, after seeing that it is empty, we see

 372      * that workerCount is 0 (which sometimes entails a recheck -- see

 373      * below).

 374      */

 375     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

 376     private static final int COUNT_BITS = Integer.SIZE - 3;

 377     private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

 378 

 379     // runState is stored in the high-order bits

 380     private static final int RUNNING    = -1 << COUNT_BITS;

 381     private static final int SHUTDOWN   =  0 << COUNT_BITS;

 382     private static final int STOP       =  1 << COUNT_BITS;

 383     private static final int TIDYING    =  2 << COUNT_BITS;

 384     private static final int TERMINATED =  3 << COUNT_BITS;

 385 

 386     // Packing and unpacking ctl

 387     private static int runStateOf(int c)     { return c & ~CAPACITY; }

 388     private static int workerCountOf(int c)  { return c & CAPACITY; }

 389     private static int ctlOf(int rs, int wc) { return rs | wc; }

 390 

 391     /*

 392      * Bit field accessors that don't require unpacking ctl.

 393      * These depend on the bit layout and on workerCount being never negative.

 394      */

 395 

 396     private static boolean runStateLessThan(int c, int s) {

 397         return c < s;

 398     }

 399 

 400     private static boolean runStateAtLeast(int c, int s) {

 401         return c >= s;

 402     }

 403 

 404     private static boolean isRunning(int c) {

 405         return c < SHUTDOWN;

 406     }

 407 

 408     /**

 409      * Attempt to CAS-increment the workerCount field of ctl.

 410      */

 411     private boolean compareAndIncrementWorkerCount(int expect) {

 412         return ctl.compareAndSet(expect, expect + 1);

 413     }

 414 

 415     /**

 416      * Attempt to CAS-decrement the workerCount field of ctl.

 417      */

 418     private boolean compareAndDecrementWorkerCount(int expect) {

 419         return ctl.compareAndSet(expect, expect - 1);

 420     }

 421 

 422     /**

 423      * Decrements the workerCount field of ctl. This is called only on

 424      * abrupt termination of a thread (see processWorkerExit). Other

 425      * decrements are performed within getTask.

 426      */

 427     private void decrementWorkerCount() {

 428         do {} while (! compareAndDecrementWorkerCount(ctl.get()));

 429     }

 430 

 431     /**

 432      * The queue used for holding tasks and handing off to worker

 433      * threads.  We do not require that workQueue.poll() returning

 434      * null necessarily means that workQueue.isEmpty(), so rely

 435      * solely on isEmpty to see if the queue is empty (which we must

 436      * do for example when deciding whether to transition from

 437      * SHUTDOWN to TIDYING).  This accommodates special-purpose

 438      * queues such as DelayQueues for which poll() is allowed to

 439      * return null even if it may later return non-null when delays

 440      * expire.

 441      */

 442     private final BlockingQueue<Runnable> workQueue;

 443 

 444     /**

 445      * Lock held on access to workers set and related bookkeeping.

 446      * While we could use a concurrent set of some sort, it turns out

 447      * to be generally preferable to use a lock. Among the reasons is

 448      * that this serializes interruptIdleWorkers, which avoids

 449      * unnecessary interrupt storms, especially during shutdown.

 450      * Otherwise exiting threads would concurrently interrupt those

 451      * that have not yet interrupted. It also simplifies some of the

 452      * associated statistics bookkeeping of largestPoolSize etc. We

 453      * also hold mainLock on shutdown and shutdownNow, for the sake of

 454      * ensuring workers set is stable while separately checking

 455      * permission to interrupt and actually interrupting.

 456      */

 457     private final ReentrantLock mainLock = new ReentrantLock();

 458 

 459     /**

 460      * Set containing all worker threads in pool. Accessed only when

 461      * holding mainLock.

 462      */

 463     private final HashSet<Worker> workers = new HashSet<Worker>();

 464 

 465     /**

 466      * Wait condition to support awaitTermination

 467      */

 468     private final Condition termination = mainLock.newCondition();

 469 

 470     /**

 471      * Tracks largest attained pool size. Accessed only under

 472      * mainLock.

 473      */

 474     private int largestPoolSize;

 475 

 476     /**

 477      * Counter for completed tasks. Updated only on termination of

 478      * worker threads. Accessed only under mainLock.

 479      */

 480     private long completedTaskCount;

 481 

 482     /*

 483      * All user control parameters are declared as volatiles so that

 484      * ongoing actions are based on freshest values, but without need

 485      * for locking, since no internal invariants depend on them

 486      * changing synchronously with respect to other actions.

 487      */

 488 

 489     /**

 490      * Factory for new threads. All threads are created using this

 491      * factory (via method addWorker).  All callers must be prepared

 492      * for addWorker to fail, which may reflect a system or user's

 493      * policy limiting the number of threads.  Even though it is not

 494      * treated as an error, failure to create threads may result in

 495      * new tasks being rejected or existing ones remaining stuck in

 496      * the queue.

 497      *

 498      * We go further and preserve pool invariants even in the face of

 499      * errors such as OutOfMemoryError, that might be thrown while

 500      * trying to create threads.  Such errors are rather common due to

 501      * the need to allocate a native stack in Thread#start, and users

 502      * will want to perform clean pool shutdown to clean up.  There

 503      * will likely be enough memory available for the cleanup code to

 504      * complete without encountering yet another OutOfMemoryError.

 505      */

 506     private volatile ThreadFactory threadFactory;

 507 

 508     /**

 509      * Handler called when saturated or shutdown in execute.

 510      */

 511     private volatile RejectedExecutionHandler handler;

 512 

 513     /**

 514      * Timeout in nanoseconds for idle threads waiting for work.

 515      * Threads use this timeout when there are more than corePoolSize

 516      * present or if allowCoreThreadTimeOut. Otherwise they wait

 517      * forever for new work.

 518      */

 519     private volatile long keepAliveTime;

 520 

 521     /**

 522      * If false (default), core threads stay alive even when idle.

 523      * If true, core threads use keepAliveTime to time out waiting

 524      * for work.

 525      */

 526     private volatile boolean allowCoreThreadTimeOut;

 527 

 528     /**

 529      * Core pool size is the minimum number of workers to keep alive

 530      * (and not allow to time out etc) unless allowCoreThreadTimeOut

 531      * is set, in which case the minimum is zero.

 532      */

 533     private volatile int corePoolSize;

 534 

 535     /**

 536      * Maximum pool size. Note that the actual maximum is internally

 537      * bounded by CAPACITY.

 538      */

 539     private volatile int maximumPoolSize;

 540 

 541     /**

 542      * The default rejected execution handler

 543      */

 544     private static final RejectedExecutionHandler defaultHandler =

 545         new AbortPolicy();

 546 

 547     /**

 548      * Permission required for callers of shutdown and shutdownNow.

 549      * We additionally require (see checkShutdownAccess) that callers

 550      * have permission to actually interrupt threads in the worker set

 551      * (as governed by Thread.interrupt, which relies on

 552      * ThreadGroup.checkAccess, which in turn relies on

 553      * SecurityManager.checkAccess). Shutdowns are attempted only if

 554      * these checks pass.

 555      *

 556      * All actual invocations of Thread.interrupt (see

 557      * interruptIdleWorkers and interruptWorkers) ignore

 558      * SecurityExceptions, meaning that the attempted interrupts

 559      * silently fail. In the case of shutdown, they should not fail

 560      * unless the SecurityManager has inconsistent policies, sometimes

 561      * allowing access to a thread and sometimes not. In such cases,

 562      * failure to actually interrupt threads may disable or delay full

 563      * termination. Other uses of interruptIdleWorkers are advisory,

 564      * and failure to actually interrupt will merely delay response to

 565      * configuration changes so is not handled exceptionally.

 566      */

 567     private static final RuntimePermission shutdownPerm =

 568         new RuntimePermission("modifyThread");

 569 

 570     /**

 571      * Class Worker mainly maintains interrupt control state for

 572      * threads running tasks, along with other minor bookkeeping.

 573      * This class opportunistically extends AbstractQueuedSynchronizer

 574      * to simplify acquiring and releasing a lock surrounding each

 575      * task execution.  This protects against interrupts that are

 576      * intended to wake up a worker thread waiting for a task from

 577      * instead interrupting a task being run.  We implement a simple

 578      * non-reentrant mutual exclusion lock rather than use

 579      * ReentrantLock because we do not want worker tasks to be able to

 580      * reacquire the lock when they invoke pool control methods like

 581      * setCorePoolSize.  Additionally, to suppress interrupts until

 582      * the thread actually starts running tasks, we initialize lock

 583      * state to a negative value, and clear it upon start (in

 584      * runWorker).

 585      */

 586     private final class Worker

 587         extends AbstractQueuedSynchronizer

 588         implements Runnable

 589     {

 590         /**

 591          * This class will never be serialized, but we provide a

 592          * serialVersionUID to suppress a javac warning.

 593          */

 594         private static final long serialVersionUID = 6138294804551838833L;

 595 

 596         /** Thread this worker is running in.  Null if factory fails. */

 597         final Thread thread;

 598         /** Initial task to run.  Possibly null. */

 599         Runnable firstTask;

 600         /** Per-thread task counter */

 601         volatile long completedTasks;

 602 

 603         /**

 604          * Creates with given first task and thread from ThreadFactory.

 605          * @param firstTask the first task (null if none)

 606          */

 607         Worker(Runnable firstTask) {

 608             setState(-1); // inhibit interrupts until runWorker

 609             this.firstTask = firstTask;

 610             this.thread = getThreadFactory().newThread(this);

 611         }

 612 

 613         /** Delegates main run loop to outer runWorker  */

 614         public void run() {

 615             runWorker(this);

 616         }

 617 

 618         // Lock methods

 619         //

 620         // The value 0 represents the unlocked state.

 621         // The value 1 represents the locked state.

 622 

 623         protected boolean isHeldExclusively() {

 624             return getState() != 0;

 625         }

 626 

 627         protected boolean tryAcquire(int unused) {

 628             if (compareAndSetState(0, 1)) {

 629                 setExclusiveOwnerThread(Thread.currentThread());

 630                 return true;

 631             }

 632             return false;

 633         }

 634 

 635         protected boolean tryRelease(int unused) {

 636             setExclusiveOwnerThread(null);

 637             setState(0);

 638             return true;

 639         }

 640 

 641         public void lock()        { acquire(1); }

 642         public boolean tryLock()  { return tryAcquire(1); }

 643         public void unlock()      { release(1); }

 644         public boolean isLocked() { return isHeldExclusively(); }

 645 

 646         void interruptIfStarted() {

 647             Thread t;

 648             if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {

 649                 try {

 650                     t.interrupt();

 651                 } catch (SecurityException ignore) {

 652                 }

 653             }

 654         }

 655     }

 656 

 657     /*

 658      * Methods for setting control state

 659      */

 660 

 661     /**

 662      * Transitions runState to given target, or leaves it alone if

 663      * already at least the given target.

 664      *

 665      * @param targetState the desired state, either SHUTDOWN or STOP

 666      *        (but not TIDYING or TERMINATED -- use tryTerminate for that)

 667      */

 668     private void advanceRunState(int targetState) {

 669         for (;;) {

 670             int c = ctl.get();

 671             if (runStateAtLeast(c, targetState) ||

 672                 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))

 673                 break;

 674         }

 675     }

 676 

 677     /**

 678      * Transitions to TERMINATED state if either (SHUTDOWN and pool

 679      * and queue empty) or (STOP and pool empty).  If otherwise

 680      * eligible to terminate but workerCount is nonzero, interrupts an

 681      * idle worker to ensure that shutdown signals propagate. This

 682      * method must be called following any action that might make

 683      * termination possible -- reducing worker count or removing tasks

 684      * from the queue during shutdown. The method is non-private to

 685      * allow access from ScheduledThreadPoolExecutor.

 686      */

 687     final void tryTerminate() {

 688         for (;;) {

 689             int c = ctl.get();

 690             if (isRunning(c) ||

 691                 runStateAtLeast(c, TIDYING) ||

 692                 (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))

 693                 return;

 694             if (workerCountOf(c) != 0) { // Eligible to terminate

 695                 interruptIdleWorkers(ONLY_ONE);

 696                 return;

 697             }

 698 

 699             final ReentrantLock mainLock = this.mainLock;

 700             mainLock.lock();

 701             try {

 702                 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {

 703                     try {

 704                         terminated();

 705                     } finally {

 706                         ctl.set(ctlOf(TERMINATED, 0));

 707                         termination.signalAll();

 708                     }

 709                     return;

 710                 }

 711             } finally {

 712                 mainLock.unlock();

 713             }

 714             // else retry on failed CAS

 715         }

 716     }

 717 

 718     /*

 719      * Methods for controlling interrupts to worker threads.

 720      */

 721 

 722     /**

 723      * If there is a security manager, makes sure caller has

 724      * permission to shut down threads in general (see shutdownPerm).

 725      * If this passes, additionally makes sure the caller is allowed

 726      * to interrupt each worker thread. This might not be true even if

 727      * first check passed, if the SecurityManager treats some threads

 728      * specially.

 729      */

 730     private void checkShutdownAccess() {

 731         SecurityManager security = System.getSecurityManager();

 732         if (security != null) {

 733             security.checkPermission(shutdownPerm);

 734             final ReentrantLock mainLock = this.mainLock;

 735             mainLock.lock();

 736             try {

 737                 for (Worker w : workers)

 738                     security.checkAccess(w.thread);

 739             } finally {

 740                 mainLock.unlock();

 741             }

 742         }

 743     }

 744 

 745     /**

 746      * Interrupts all threads, even if active. Ignores SecurityExceptions

 747      * (in which case some threads may remain uninterrupted).

 748      */

 749     private void interruptWorkers() {

 750         final ReentrantLock mainLock = this.mainLock;

 751         mainLock.lock();

 752         try {

 753             for (Worker w : workers)

 754                 w.interruptIfStarted();

 755         } finally {

 756             mainLock.unlock();

 757         }

 758     }

 759 

 760     /**

 761      * Interrupts threads that might be waiting for tasks (as

 762      * indicated by not being locked) so they can check for

 763      * termination or configuration changes. Ignores

 764      * SecurityExceptions (in which case some threads may remain

 765      * uninterrupted).

 766      *

 767      * @param onlyOne If true, interrupt at most one worker. This is

 768      * called only from tryTerminate when termination is otherwise

 769      * enabled but there are still other workers.  In this case, at

 770      * most one waiting worker is interrupted to propagate shutdown

 771      * signals in case all threads are currently waiting.

 772      * Interrupting any arbitrary thread ensures that newly arriving

 773      * workers since shutdown began will also eventually exit.

 774      * To guarantee eventual termination, it suffices to always

 775      * interrupt only one idle worker, but shutdown() interrupts all

 776      * idle workers so that redundant workers exit promptly, not

 777      * waiting for a straggler task to finish.

 778      */

 779     private void interruptIdleWorkers(boolean onlyOne) {

 780         final ReentrantLock mainLock = this.mainLock;

 781         mainLock.lock();

 782         try {

 783             for (Worker w : workers) {

 784                 Thread t = w.thread;

 785                 if (!t.isInterrupted() && w.tryLock()) {

 786                     try {

 787                         t.interrupt();

 788                     } catch (SecurityException ignore) {

 789                     } finally {

 790                         w.unlock();

 791                     }

 792                 }

 793                 if (onlyOne)

 794                     break;

 795             }

 796         } finally {

 797             mainLock.unlock();

 798         }

 799     }

 800 

 801     /**

 802      * Common form of interruptIdleWorkers, to avoid having to

 803      * remember what the boolean argument means.

 804      */

 805     private void interruptIdleWorkers() {

 806         interruptIdleWorkers(false);

 807     }

 808 

 809     private static final boolean ONLY_ONE = true;

 810 

 811     /*

 812      * Misc utilities, most of which are also exported to

 813      * ScheduledThreadPoolExecutor

 814      */

 815 

 816     /**

 817      * Invokes the rejected execution handler for the given command.

 818      * Package-protected for use by ScheduledThreadPoolExecutor.

 819      */

 820     final void reject(Runnable command) {

 821         handler.rejectedExecution(command, this);

 822     }

 823 

 824     /**

 825      * Performs any further cleanup following run state transition on

 826      * invocation of shutdown.  A no-op here, but used by

 827      * ScheduledThreadPoolExecutor to cancel delayed tasks.

 828      */

 829     void onShutdown() {

 830     }

 831 

 832     /**

 833      * State check needed by ScheduledThreadPoolExecutor to

 834      * enable running tasks during shutdown.

 835      *

 836      * @param shutdownOK true if should return true if SHUTDOWN

 837      */

 838     final boolean isRunningOrShutdown(boolean shutdownOK) {

 839         int rs = runStateOf(ctl.get());

 840         return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);

 841     }

 842 

 843     /**

 844      * Drains the task queue into a new list, normally using

 845      * drainTo. But if the queue is a DelayQueue or any other kind of

 846      * queue for which poll or drainTo may fail to remove some

 847      * elements, it deletes them one by one.

 848      */

 849     private List<Runnable> drainQueue() {

 850         BlockingQueue<Runnable> q = workQueue;

 851         List<Runnable> taskList = new ArrayList<Runnable>();

 852         q.drainTo(taskList);

 853         if (!q.isEmpty()) {

 854             for (Runnable r : q.toArray(new Runnable[0])) {

 855                 if (q.remove(r))

 856                     taskList.add(r);

 857             }

 858         }

 859         return taskList;

 860     }

 861 

 862     /*

 863      * Methods for creating, running and cleaning up after workers

 864      */

 865 

 866     /**

 867      * Checks if a new worker can be added with respect to current

 868      * pool state and the given bound (either core or maximum). If so,

 869      * the worker count is adjusted accordingly, and, if possible, a

 870      * new worker is created and started, running firstTask as its

 871      * first task. This method returns false if the pool is stopped or

 872      * eligible to shut down. It also returns false if the thread

 873      * factory fails to create a thread when asked.  If the thread

 874      * creation fails, either due to the thread factory returning

 875      * null, or due to an exception (typically OutOfMemoryError in

 876      * Thread#start), we roll back cleanly.

 877      *

 878      * @param firstTask the task the new thread should run first (or

 879      * null if none). Workers are created with an initial first task

 880      * (in method execute()) to bypass queuing when there are fewer

 881      * than corePoolSize threads (in which case we always start one),

 882      * or when the queue is full (in which case we must bypass queue).

 883      * Initially idle threads are usually created via

 884      * prestartCoreThread or to replace other dying workers.

 885      *

 886      * @param core if true use corePoolSize as bound, else

 887      * maximumPoolSize. (A boolean indicator is used here rather than a

 888      * value to ensure reads of fresh values after checking other pool

 889      * state).

 890      * @return true if successful

 891      */

 892     private boolean addWorker(Runnable firstTask, boolean core) {

 893         retry:

 894         for (;;) {

 895             int c = ctl.get();

 896             int rs = runStateOf(c);

 897 

 898             // Check if queue empty only if necessary.

 899             if (rs >= SHUTDOWN &&

 900                 ! (rs == SHUTDOWN &&

 901                    firstTask == null &&

 902                    ! workQueue.isEmpty()))

 903                 return false;

 904 

 905             for (;;) {

 906                 int wc = workerCountOf(c);

 907                 if (wc >= CAPACITY ||

 908                     wc >= (core ? corePoolSize : maximumPoolSize))

 909                     return false;

 910                 if (compareAndIncrementWorkerCount(c))

 911                     break retry;

 912                 c = ctl.get();  // Re-read ctl

 913                 if (runStateOf(c) != rs)

 914                     continue retry;

 915                 // else CAS failed due to workerCount change; retry inner loop

 916             }

 917         }

 918 

 919         boolean workerStarted = false;

 920         boolean workerAdded = false;

 921         Worker w = null;

 922         try {

 923             final ReentrantLock mainLock = this.mainLock;

 924             w = new Worker(firstTask);

 925             final Thread t = w.thread;

 926             if (t != null) {

 927                 mainLock.lock();

 928                 try {

 929                     // Recheck while holding lock.

 930                     // Back out on ThreadFactory failure or if

 931                     // shut down before lock acquired.

 932                     int c = ctl.get();

 933                     int rs = runStateOf(c);

 934 

 935                     if (rs < SHUTDOWN ||

 936                         (rs == SHUTDOWN && firstTask == null)) {

 937                         if (t.isAlive()) // precheck that t is startable

 938                             throw new IllegalThreadStateException();

 939                         workers.add(w);

 940                         int s = workers.size();

 941                         if (s > largestPoolSize)

 942                             largestPoolSize = s;

 943                         workerAdded = true;

 944                     }

 945                 } finally {

 946                     mainLock.unlock();

 947                 }

 948                 if (workerAdded) {

 949                     t.start();

 950                     workerStarted = true;

 951                 }

 952             }

 953         } finally {

 954             if (! workerStarted)

 955                 addWorkerFailed(w);

 956         }

 957         return workerStarted;

 958     }

 959 

 960     /**

 961      * Rolls back the worker thread creation.

 962      * - removes worker from workers, if present

 963      * - decrements worker count

 964      * - rechecks for termination, in case the existence of this

 965      *   worker was holding up termination

 966      */

 967     private void addWorkerFailed(Worker w) {

 968         final ReentrantLock mainLock = this.mainLock;

 969         mainLock.lock();

 970         try {

 971             if (w != null)

 972                 workers.remove(w);

 973             decrementWorkerCount();

 974             tryTerminate();

 975         } finally {

 976             mainLock.unlock();

 977         }

 978     }

 979 

 980     /**

 981      * Performs cleanup and bookkeeping for a dying worker. Called

 982      * only from worker threads. Unless completedAbruptly is set,

 983      * assumes that workerCount has already been adjusted to account

 984      * for exit.  This method removes thread from worker set, and

 985      * possibly terminates the pool or replaces the worker if either

 986      * it exited due to user task exception or if fewer than

 987      * corePoolSize workers are running or queue is non-empty but

 988      * there are no workers.

 989      *

 990      * @param w the worker

 991      * @param completedAbruptly if the worker died due to user exception

 992      */

 993     private void processWorkerExit(Worker w, boolean completedAbruptly) {

 994         if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted

 995             decrementWorkerCount();

 996 

 997         final ReentrantLock mainLock = this.mainLock;

 998         mainLock.lock();

 999         try {

1000             completedTaskCount += w.completedTasks;

1001             workers.remove(w);

1002         } finally {

1003             mainLock.unlock();

1004         }

1005 

1006         tryTerminate();

1007 

1008         int c = ctl.get();

1009         if (runStateLessThan(c, STOP)) {

1010             if (!completedAbruptly) {

1011                 int min = allowCoreThreadTimeOut ? 0 : corePoolSize;

1012                 if (min == 0 && ! workQueue.isEmpty())

1013                     min = 1;

1014                 if (workerCountOf(c) >= min)

1015                     return; // replacement not needed

1016             }

1017             addWorker(null, false);

1018         }

1019     }

1020 

1021     /**

1022      * Performs blocking or timed wait for a task, depending on

1023      * current configuration settings, or returns null if this worker

1024      * must exit because of any of:

1025      * 1. There are more than maximumPoolSize workers (due to

1026      *    a call to setMaximumPoolSize).

1027      * 2. The pool is stopped.

1028      * 3. The pool is shutdown and the queue is empty.

1029      * 4. This worker timed out waiting for a task, and timed-out

1030      *    workers are subject to termination (that is,

1031      *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})

1032      *    both before and after the timed wait.

1033      *

1034      * @return task, or null if the worker must exit, in which case

1035      *         workerCount is decremented

1036      */

1037     private Runnable getTask() {

1038         boolean timedOut = false; // Did the last poll() time out?

1039 

1040         retry:

1041         for (;;) {

1042             int c = ctl.get();

1043             int rs = runStateOf(c);

1044 

1045             // Check if queue empty only if necessary.

1046             if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {

1047                 decrementWorkerCount();

1048                 return null;

1049             }

1050 

1051             boolean timed;      // Are workers subject to culling?

1052 

1053             for (;;) {

1054                 int wc = workerCountOf(c);

1055                 timed = allowCoreThreadTimeOut || wc > corePoolSize;

1056 

1057                 if (wc <= maximumPoolSize && ! (timedOut && timed))

1058                     break;

1059                 if (compareAndDecrementWorkerCount(c))

1060                     return null;

1061                 c = ctl.get();  // Re-read ctl

1062                 if (runStateOf(c) != rs)

1063                     continue retry;

1064                 // else CAS failed due to workerCount change; retry inner loop

1065             }

1066 

1067             try {

1068                 Runnable r = timed ?

1069                     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :

1070                     workQueue.take();

1071                 if (r != null)

1072                     return r;

1073                 timedOut = true;

1074             } catch (InterruptedException retry) {

1075                 timedOut = false;

1076             }

1077         }

1078     }

1079 

1080     /**

1081      * Main worker run loop.  Repeatedly gets tasks from queue and

1082      * executes them, while coping with a number of issues:

1083      *

1084      * 1. We may start out with an initial task, in which case we

1085      * don't need to get the first one. Otherwise, as long as pool is

1086      * running, we get tasks from getTask. If it returns null then the

1087      * worker exits due to changed pool state or configuration

1088      * parameters.  Other exits result from exception throws in

1089      * external code, in which case completedAbruptly holds, which

1090      * usually leads processWorkerExit to replace this thread.

1091      *

1092      * 2. Before running any task, the lock is acquired to prevent

1093      * other pool interrupts while the task is executing, and

1094      * clearInterruptsForTaskRun called to ensure that unless pool is

1095      * stopping, this thread does not have its interrupt set.

1096      *

1097      * 3. Each task run is preceded by a call to beforeExecute, which

1098      * might throw an exception, in which case we cause thread to die

1099      * (breaking loop with completedAbruptly true) without processing

1100      * the task.

1101      *

1102      * 4. Assuming beforeExecute completes normally, we run the task,

1103      * gathering any of its thrown exceptions to send to

1104      * afterExecute. We separately handle RuntimeException, Error

1105      * (both of which the specs guarantee that we trap) and arbitrary

1106      * Throwables.  Because we cannot rethrow Throwables within

1107      * Runnable.run, we wrap them within Errors on the way out (to the

1108      * thread's UncaughtExceptionHandler).  Any thrown exception also

1109      * conservatively causes thread to die.

1110      *

1111      * 5. After task.run completes, we call afterExecute, which may

1112      * also throw an exception, which will also cause thread to

1113      * die. According to JLS Sec 14.20, this exception is the one that

1114      * will be in effect even if task.run throws.

1115      *

1116      * The net effect of the exception mechanics is that afterExecute

1117      * and the thread's UncaughtExceptionHandler have as accurate

1118      * information as we can provide about any problems encountered by

1119      * user code.

1120      *

1121      * @param w the worker

1122      */

1123     final void runWorker(Worker w) {

1124         Thread wt = Thread.currentThread();

1125         Runnable task = w.firstTask;

1126         w.firstTask = null;

1127         w.unlock(); // allow interrupts

1128         boolean completedAbruptly = true;

1129         try {

1130             while (task != null || (task = getTask()) != null) {

1131                 w.lock();

1132                 // If pool is stopping, ensure thread is interrupted;

1133                 // if not, ensure thread is not interrupted.  This

1134                 // requires a recheck in second case to deal with

1135                 // shutdownNow race while clearing interrupt

1136                 if ((runStateAtLeast(ctl.get(), STOP) ||

1137                      (Thread.interrupted() &&

1138                       runStateAtLeast(ctl.get(), STOP))) &&

1139                     !wt.isInterrupted())

1140                     wt.interrupt();

1141                 try {

1142                     beforeExecute(wt, task);

1143                     Throwable thrown = null;

1144                     try {

1145                         task.run();

1146                     } catch (RuntimeException x) {

1147                         thrown = x; throw x;

1148                     } catch (Error x) {

1149                         thrown = x; throw x;

1150                     } catch (Throwable x) {

1151                         thrown = x; throw new Error(x);

1152                     } finally {

1153                         afterExecute(task, thrown);

1154                     }

1155                 } finally {

1156                     task = null;

1157                     w.completedTasks++;

1158                     w.unlock();

1159                 }

1160             }

1161             completedAbruptly = false;

1162         } finally {

1163             processWorkerExit(w, completedAbruptly);

1164         }

1165     }

1166 

1167     // Public constructors and methods

1168 

1169     /**

1170      * Creates a new {@code ThreadPoolExecutor} with the given initial

1171      * parameters and default thread factory and rejected execution handler.

1172      * It may be more convenient to use one of the {@link Executors} factory

1173      * methods instead of this general purpose constructor.

1174      *

1175      * @param corePoolSize the number of threads to keep in the pool, even

1176      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set

1177      * @param maximumPoolSize the maximum number of threads to allow in the

1178      *        pool

1179      * @param keepAliveTime when the number of threads is greater than

1180      *        the core, this is the maximum time that excess idle threads

1181      *        will wait for new tasks before terminating.

1182      * @param unit the time unit for the {@code keepAliveTime} argument

1183      * @param workQueue the queue to use for holding tasks before they are

1184      *        executed.  This queue will hold only the {@code Runnable}

1185      *        tasks submitted by the {@code execute} method.

1186      * @throws IllegalArgumentException if one of the following holds:<br>

1187      *         {@code corePoolSize < 0}<br>

1188      *         {@code keepAliveTime < 0}<br>

1189      *         {@code maximumPoolSize <= 0}<br>

1190      *         {@code maximumPoolSize < corePoolSize}

1191      * @throws NullPointerException if {@code workQueue} is null

1192      */

1193     public ThreadPoolExecutor(int corePoolSize,

1194                               int maximumPoolSize,

1195                               long keepAliveTime,

1196                               TimeUnit unit,

1197                               BlockingQueue<Runnable> workQueue) {

1198         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,

1199              Executors.defaultThreadFactory(), defaultHandler);

1200     }

1201 

1202     /**

1203      * Creates a new {@code ThreadPoolExecutor} with the given initial

1204      * parameters and default rejected execution handler.

1205      *

1206      * @param corePoolSize the number of threads to keep in the pool, even

1207      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set

1208      * @param maximumPoolSize the maximum number of threads to allow in the

1209      *        pool

1210      * @param keepAliveTime when the number of threads is greater than

1211      *        the core, this is the maximum time that excess idle threads

1212      *        will wait for new tasks before terminating.

1213      * @param unit the time unit for the {@code keepAliveTime} argument

1214      * @param workQueue the queue to use for holding tasks before they are

1215      *        executed.  This queue will hold only the {@code Runnable}

1216      *        tasks submitted by the {@code execute} method.

1217      * @param threadFactory the factory to use when the executor

1218      *        creates a new thread

1219      * @throws IllegalArgumentException if one of the following holds:<br>

1220      *         {@code corePoolSize < 0}<br>

1221      *         {@code keepAliveTime < 0}<br>

1222      *         {@code maximumPoolSize <= 0}<br>

1223      *         {@code maximumPoolSize < corePoolSize}

1224      * @throws NullPointerException if {@code workQueue}

1225      *         or {@code threadFactory} is null

1226      */

1227     public ThreadPoolExecutor(int corePoolSize,

1228                               int maximumPoolSize,

1229                               long keepAliveTime,

1230                               TimeUnit unit,

1231                               BlockingQueue<Runnable> workQueue,

1232                               ThreadFactory threadFactory) {

1233         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,

1234              threadFactory, defaultHandler);

1235     }

1236 

1237     /**

1238      * Creates a new {@code ThreadPoolExecutor} with the given initial

1239      * parameters and default thread factory.

1240      *

1241      * @param corePoolSize the number of threads to keep in the pool, even

1242      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set

1243      * @param maximumPoolSize the maximum number of threads to allow in the

1244      *        pool

1245      * @param keepAliveTime when the number of threads is greater than

1246      *        the core, this is the maximum time that excess idle threads

1247      *        will wait for new tasks before terminating.

1248      * @param unit the time unit for the {@code keepAliveTime} argument

1249      * @param workQueue the queue to use for holding tasks before they are

1250      *        executed.  This queue will hold only the {@code Runnable}

1251      *        tasks submitted by the {@code execute} method.

1252      * @param handler the handler to use when execution is blocked

1253      *        because the thread bounds and queue capacities are reached

1254      * @throws IllegalArgumentException if one of the following holds:<br>

1255      *         {@code corePoolSize < 0}<br>

1256      *         {@code keepAliveTime < 0}<br>

1257      *         {@code maximumPoolSize <= 0}<br>

1258      *         {@code maximumPoolSize < corePoolSize}

1259      * @throws NullPointerException if {@code workQueue}

1260      *         or {@code handler} is null

1261      */

1262     public ThreadPoolExecutor(int corePoolSize,

1263                               int maximumPoolSize,

1264                               long keepAliveTime,

1265                               TimeUnit unit,

1266                               BlockingQueue<Runnable> workQueue,

1267                               RejectedExecutionHandler handler) {

1268         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,

1269              Executors.defaultThreadFactory(), handler);

1270     }

1271 

1272     /**

1273      * Creates a new {@code ThreadPoolExecutor} with the given initial

1274      * parameters.

1275      *

1276      * @param corePoolSize the number of threads to keep in the pool, even

1277      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set

1278      * @param maximumPoolSize the maximum number of threads to allow in the

1279      *        pool

1280      * @param keepAliveTime when the number of threads is greater than

1281      *        the core, this is the maximum time that excess idle threads

1282      *        will wait for new tasks before terminating.

1283      * @param unit the time unit for the {@code keepAliveTime} argument

1284      * @param workQueue the queue to use for holding tasks before they are

1285      *        executed.  This queue will hold only the {@code Runnable}

1286      *        tasks submitted by the {@code execute} method.

1287      * @param threadFactory the factory to use when the executor

1288      *        creates a new thread

1289      * @param handler the handler to use when execution is blocked

1290      *        because the thread bounds and queue capacities are reached

1291      * @throws IllegalArgumentException if one of the following holds:<br>

1292      *         {@code corePoolSize < 0}<br>

1293      *         {@code keepAliveTime < 0}<br>

1294      *         {@code maximumPoolSize <= 0}<br>

1295      *         {@code maximumPoolSize < corePoolSize}

1296      * @throws NullPointerException if {@code workQueue}

1297      *         or {@code threadFactory} or {@code handler} is null

1298      */

1299     public ThreadPoolExecutor(int corePoolSize,

1300                               int maximumPoolSize,

1301                               long keepAliveTime,

1302                               TimeUnit unit,

1303                               BlockingQueue<Runnable> workQueue,

1304                               ThreadFactory threadFactory,

1305                               RejectedExecutionHandler handler) {

1306         if (corePoolSize < 0 ||

1307             maximumPoolSize <= 0 ||

1308             maximumPoolSize < corePoolSize ||

1309             keepAliveTime < 0)

1310             throw new IllegalArgumentException();

1311         if (workQueue == null || threadFactory == null || handler == null)

1312             throw new NullPointerException();

1313         this.corePoolSize = corePoolSize;

1314         this.maximumPoolSize = maximumPoolSize;

1315         this.workQueue = workQueue;

1316         this.keepAliveTime = unit.toNanos(keepAliveTime);

1317         this.threadFactory = threadFactory;

1318         this.handler = handler;

1319     }

1320 

1321     /**

1322      * Executes the given task sometime in the future.  The task

1323      * may execute in a new thread or in an existing pooled thread.

1324      *

1325      * If the task cannot be submitted for execution, either because this

1326      * executor has been shutdown or because its capacity has been reached,

1327      * the task is handled by the current {@code RejectedExecutionHandler}.

1328      *

1329      * @param command the task to execute

1330      * @throws RejectedExecutionException at discretion of

1331      *         {@code RejectedExecutionHandler}, if the task

1332      *         cannot be accepted for execution

1333      * @throws NullPointerException if {@code command} is null

1334      */

1335     public void execute(Runnable command) {

1336         if (command == null)

1337             throw new NullPointerException();

1338         /*

1339          * Proceed in 3 steps:

1340          *

1341          * 1. If fewer than corePoolSize threads are running, try to

1342          * start a new thread with the given command as its first

1343          * task.  The call to addWorker atomically checks runState and

1344          * workerCount, and so prevents false alarms that would add

1345          * threads when it shouldn't, by returning false.

1346          *

1347          * 2. If a task can be successfully queued, then we still need

1348          * to double-check whether we should have added a thread

1349          * (because existing ones died since last checking) or that

1350          * the pool shut down since entry into this method. So we

1351          * recheck state and if necessary roll back the enqueuing if

1352          * stopped, or start a new thread if there are none.

1353          *

1354          * 3. If we cannot queue task, then we try to add a new

1355          * thread.  If it fails, we know we are shut down or saturated

1356          * and so reject the task.

1357          */

1358         int c = ctl.get();

1359         if (workerCountOf(c) < corePoolSize) {

1360             if (addWorker(command, true))

1361                 return;

1362             c = ctl.get();

1363         }

1364         if (isRunning(c) && workQueue.offer(command)) {

1365             int recheck = ctl.get();

1366             if (! isRunning(recheck) && remove(command))

1367                 reject(command);

1368             else if (workerCountOf(recheck) == 0)

1369                 addWorker(null, false);

1370         }

1371         else if (!addWorker(command, false))

1372             reject(command);

1373     }

1374 

1375     /**

1376      * Initiates an orderly shutdown in which previously submitted

1377      * tasks are executed, but no new tasks will be accepted.

1378      * Invocation has no additional effect if already shut down.

1379      *

1380      * <p>This method does not wait for previously submitted tasks to

1381      * complete execution.  Use {@link #awaitTermination awaitTermination}

1382      * to do that.

1383      *

1384      * @throws SecurityException {@inheritDoc}

1385      */

1386     public void shutdown() {

1387         final ReentrantLock mainLock = this.mainLock;

1388         mainLock.lock();

1389         try {

1390             checkShutdownAccess();

1391             advanceRunState(SHUTDOWN);

1392             interruptIdleWorkers();

1393             onShutdown(); // hook for ScheduledThreadPoolExecutor

1394         } finally {

1395             mainLock.unlock();

1396         }

1397         tryTerminate();

1398     }

1399 

1400     /**

1401      * Attempts to stop all actively executing tasks, halts the

1402      * processing of waiting tasks, and returns a list of the tasks

1403      * that were awaiting execution. These tasks are drained (removed)

1404      * from the task queue upon return from this method.

1405      *

1406      * <p>This method does not wait for actively executing tasks to

1407      * terminate.  Use {@link #awaitTermination awaitTermination} to

1408      * do that.

1409      *

1410      * <p>There are no guarantees beyond best-effort attempts to stop

1411      * processing actively executing tasks.  This implementation

1412      * cancels tasks via {@link Thread#interrupt}, so any task that

1413      * fails to respond to interrupts may never terminate.

1414      *

1415      * @throws SecurityException {@inheritDoc}

1416      */

1417     public List<Runnable> shutdownNow() {

1418         List<Runnable> tasks;

1419         final ReentrantLock mainLock = this.mainLock;

1420         mainLock.lock();

1421         try {

1422             checkShutdownAccess();

1423             advanceRunState(STOP);

1424             interruptWorkers();

1425             tasks = drainQueue();

1426         } finally {

1427             mainLock.unlock();

1428         }

1429         tryTerminate();

1430         return tasks;

1431     }

1432 

1433     public boolean isShutdown() {

1434         return ! isRunning(ctl.get());

1435     }

1436 

1437     /**

1438      * Returns true if this executor is in the process of terminating

1439      * after {@link #shutdown} or {@link #shutdownNow} but has not

1440      * completely terminated.  This method may be useful for

1441      * debugging. A return of {@code true} reported a sufficient

1442      * period after shutdown may indicate that submitted tasks have

1443      * ignored or suppressed interruption, causing this executor not

1444      * to properly terminate.

1445      *

1446      * @return true if terminating but not yet terminated

1447      */

1448     public boolean isTerminating() {

1449         int c = ctl.get();

1450         return ! isRunning(c) && runStateLessThan(c, TERMINATED);

1451     }

1452 

1453     public boolean isTerminated() {

1454         return runStateAtLeast(ctl.get(), TERMINATED);

1455     }

1456 

1457     public boolean awaitTermination(long timeout, TimeUnit unit)

1458         throws InterruptedException {

1459         long nanos = unit.toNanos(timeout);

1460         final ReentrantLock mainLock = this.mainLock;

1461         mainLock.lock();

1462         try {

1463             for (;;) {

1464                 if (runStateAtLeast(ctl.get(), TERMINATED))

1465                     return true;

1466                 if (nanos <= 0)

1467                     return false;

1468                 nanos = termination.awaitNanos(nanos);

1469             }

1470         } finally {

1471             mainLock.unlock();

1472         }

1473     }

1474 

1475     /**

1476      * Invokes {@code shutdown} when this executor is no longer

1477      * referenced and it has no threads.

1478      */

1479     protected void finalize() {

1480         shutdown();

1481     }

1482 

1483     /**

1484      * Sets the thread factory used to create new threads.

1485      *

1486      * @param threadFactory the new thread factory

1487      * @throws NullPointerException if threadFactory is null

1488      * @see #getThreadFactory

1489      */

1490     public void setThreadFactory(ThreadFactory threadFactory) {

1491         if (threadFactory == null)

1492             throw new NullPointerException();

1493         this.threadFactory = threadFactory;

1494     }

1495 

1496     /**

1497      * Returns the thread factory used to create new threads.

1498      *

1499      * @return the current thread factory

1500      * @see #setThreadFactory

1501      */

1502     public ThreadFactory getThreadFactory() {

1503         return threadFactory;

1504     }

1505 

1506     /**

1507      * Sets a new handler for unexecutable tasks.

1508      *

1509      * @param handler the new handler

1510      * @throws NullPointerException if handler is null

1511      * @see #getRejectedExecutionHandler

1512      */

1513     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {

1514         if (handler == null)

1515             throw new NullPointerException();

1516         this.handler = handler;

1517     }

1518 

1519     /**

1520      * Returns the current handler for unexecutable tasks.

1521      *

1522      * @return the current handler

1523      * @see #setRejectedExecutionHandler

1524      */

1525     public RejectedExecutionHandler getRejectedExecutionHandler() {

1526         return handler;

1527     }

1528 

1529     /**

1530      * Sets the core number of threads.  This overrides any value set

1531      * in the constructor.  If the new value is smaller than the

1532      * current value, excess existing threads will be terminated when

1533      * they next become idle.  If larger, new threads will, if needed,

1534      * be started to execute any queued tasks.

1535      *

1536      * @param corePoolSize the new core size

1537      * @throws IllegalArgumentException if {@code corePoolSize < 0}

1538      * @see #getCorePoolSize

1539      */

1540     public void setCorePoolSize(int corePoolSize) {

1541         if (corePoolSize < 0)

1542             throw new IllegalArgumentException();

1543         int delta = corePoolSize - this.corePoolSize;

1544         this.corePoolSize = corePoolSize;

1545         if (workerCountOf(ctl.get()) > corePoolSize)

1546             interruptIdleWorkers();

1547         else if (delta > 0) {

1548             // We don't really know how many new threads are "needed".

1549             // As a heuristic, prestart enough new workers (up to new

1550             // core size) to handle the current number of tasks in

1551             // queue, but stop if queue becomes empty while doing so.

1552             int k = Math.min(delta, workQueue.size());

1553             while (k-- > 0 && addWorker(null, true)) {

1554                 if (workQueue.isEmpty())

1555                     break;

1556             }

1557         }

1558     }

1559 

1560     /**

1561      * Returns the core number of threads.

1562      *

1563      * @return the core number of threads

1564      * @see #setCorePoolSize

1565      */

1566     public int getCorePoolSize() {

1567         return corePoolSize;

1568     }

1569 

1570     /**

1571      * Starts a core thread, causing it to idly wait for work. This

1572      * overrides the default policy of starting core threads only when

1573      * new tasks are executed. This method will return {@code false}

1574      * if all core threads have already been started.

1575      *

1576      * @return {@code true} if a thread was started

1577      */

1578     public boolean prestartCoreThread() {

1579         return workerCountOf(ctl.get()) < corePoolSize &&

1580             addWorker(null, true);

1581     }

1582 

1583     /**

1584      * Same as prestartCoreThread except arranges that at least one

1585      * thread is started even if corePoolSize is 0.

1586      */

1587     void ensurePrestart() {

1588         int wc = workerCountOf(ctl.get());

1589         if (wc < corePoolSize)

1590             addWorker(null, true);

1591         else if (wc == 0)

1592             addWorker(null, false);

1593     }

1594 

1595     /**

1596      * Starts all core threads, causing them to idly wait for work. This

1597      * overrides the default policy of starting core threads only when

1598      * new tasks are executed.

1599      *

1600      * @return the number of threads started

1601      */

1602     public int prestartAllCoreThreads() {

1603         int n = 0;

1604         while (addWorker(null, true))

1605             ++n;

1606         return n;

1607     }

1608 

1609     /**

1610      * Returns true if this pool allows core threads to time out and

1611      * terminate if no tasks arrive within the keepAlive time, being

1612      * replaced if needed when new tasks arrive. When true, the same

1613      * keep-alive policy applying to non-core threads applies also to

1614      * core threads. When false (the default), core threads are never

1615      * terminated due to lack of incoming tasks.

1616      *

1617      * @return {@code true} if core threads are allowed to time out,

1618      *         else {@code false}

1619      *

1620      * @since 1.6

1621      */

1622     public boolean allowsCoreThreadTimeOut() {

1623         return allowCoreThreadTimeOut;

1624     }

1625 

1626     /**

1627      * Sets the policy governing whether core threads may time out and

1628      * terminate if no tasks arrive within the keep-alive time, being

1629      * replaced if needed when new tasks arrive. When false, core

1630      * threads are never terminated due to lack of incoming

1631      * tasks. When true, the same keep-alive policy applying to

1632      * non-core threads applies also to core threads. To avoid

1633      * continual thread replacement, the keep-alive time must be

1634      * greater than zero when setting {@code true}. This method

1635      * should in general be called before the pool is actively used.

1636      *

1637      * @param value {@code true} if should time out, else {@code false}

1638      * @throws IllegalArgumentException if value is {@code true}

1639      *         and the current keep-alive time is not greater than zero

1640      *

1641      * @since 1.6

1642      */

1643     public void allowCoreThreadTimeOut(boolean value) {

1644         if (value && keepAliveTime <= 0)

1645             throw new IllegalArgumentException("Core threads must have nonzero keep alive times");

1646         if (value != allowCoreThreadTimeOut) {

1647             allowCoreThreadTimeOut = value;

1648             if (value)

1649                 interruptIdleWorkers();

1650         }

1651     }

1652 

1653     /**

1654      * Sets the maximum allowed number of threads. This overrides any

1655      * value set in the constructor. If the new value is smaller than

1656      * the current value, excess existing threads will be

1657      * terminated when they next become idle.

1658      *

1659      * @param maximumPoolSize the new maximum

1660      * @throws IllegalArgumentException if the new maximum is

1661      *         less than or equal to zero, or

1662      *         less than the {@linkplain #getCorePoolSize core pool size}

1663      * @see #getMaximumPoolSize

1664      */

1665     public void setMaximumPoolSize(int maximumPoolSize) {

1666         if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)

1667             throw new IllegalArgumentException();

1668         this.maximumPoolSize = maximumPoolSize;

1669         if (workerCountOf(ctl.get()) > maximumPoolSize)

1670             interruptIdleWorkers();

1671     }

1672 

1673     /**

1674      * Returns the maximum allowed number of threads.

1675      *

1676      * @return the maximum allowed number of threads

1677      * @see #setMaximumPoolSize

1678      */

1679     public int getMaximumPoolSize() {

1680         return maximumPoolSize;

1681     }

1682 

1683     /**

1684      * Sets the time limit for which threads may remain idle before

1685      * being terminated.  If there are more than the core number of

1686      * threads currently in the pool, after waiting this amount of

1687      * time without processing a task, excess threads will be

1688      * terminated.  This overrides any value set in the constructor.

1689      *

1690      * @param time the time to wait.  A time value of zero will cause

1691      *        excess threads to terminate immediately after executing tasks.

1692      * @param unit the time unit of the {@code time} argument

1693      * @throws IllegalArgumentException if {@code time} less than zero or

1694      *         if {@code time} is zero and {@code allowsCoreThreadTimeOut}

1695      * @see #getKeepAliveTime

1696      */

1697     public void setKeepAliveTime(long time, TimeUnit unit) {

1698         if (time < 0)

1699             throw new IllegalArgumentException();

1700         if (time == 0 && allowsCoreThreadTimeOut())

1701             throw new IllegalArgumentException("Core threads must have nonzero keep alive times");

1702         long keepAliveTime = unit.toNanos(time);

1703         long delta = keepAliveTime - this.keepAliveTime;

1704         this.keepAliveTime = keepAliveTime;

1705         if (delta < 0)

1706             interruptIdleWorkers();

1707     }

1708 

1709     /**

1710      * Returns the thread keep-alive time, which is the amount of time

1711      * that threads in excess of the core pool size may remain

1712      * idle before being terminated.

1713      *

1714      * @param unit the desired time unit of the result

1715      * @return the time limit

1716      * @see #setKeepAliveTime

1717      */

1718     public long getKeepAliveTime(TimeUnit unit) {

1719         return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);

1720     }

1721 

1722     /* User-level queue utilities */

1723 

1724     /**

1725      * Returns the task queue used by this executor. Access to the

1726      * task queue is intended primarily for debugging and monitoring.

1727      * This queue may be in active use.  Retrieving the task queue

1728      * does not prevent queued tasks from executing.

1729      *

1730      * @return the task queue

1731      */

1732     public BlockingQueue<Runnable> getQueue() {

1733         return workQueue;

1734     }

1735 

1736     /**

1737      * Removes this task from the executor's internal queue if it is

1738      * present, thus causing it not to be run if it has not already

1739      * started.

1740      *

1741      * <p> This method may be useful as one part of a cancellation

1742      * scheme.  It may fail to remove tasks that have been converted

1743      * into other forms before being placed on the internal queue. For

1744      * example, a task entered using {@code submit} might be

1745      * converted into a form that maintains {@code Future} status.

1746      * However, in such cases, method {@link #purge} may be used to

1747      * remove those Futures that have been cancelled.

1748      *

1749      * @param task the task to remove

1750      * @return true if the task was removed

1751      */

1752     public boolean remove(Runnable task) {

1753         boolean removed = workQueue.remove(task);

1754         tryTerminate(); // In case SHUTDOWN and now empty

1755         return removed;

1756     }

1757 

1758     /**

1759      * Tries to remove from the work queue all {@link Future}

1760      * tasks that have been cancelled. This method can be useful as a

1761      * storage reclamation operation, that has no other impact on

1762      * functionality. Cancelled tasks are never executed, but may

1763      * accumulate in work queues until worker threads can actively

1764      * remove them. Invoking this method instead tries to remove them now.

1765      * However, this method may fail to remove tasks in

1766      * the presence of interference by other threads.

1767      */

1768     public void purge() {

1769         final BlockingQueue<Runnable> q = workQueue;

1770         try {

1771             Iterator<Runnable> it = q.iterator();

1772             while (it.hasNext()) {

1773                 Runnable r = it.next();

1774                 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())

1775                     it.remove();

1776             }

1777         } catch (ConcurrentModificationException fallThrough) {

1778             // Take slow path if we encounter interference during traversal.

1779             // Make copy for traversal and call remove for cancelled entries.

1780             // The slow path is more likely to be O(N*N).

1781             for (Object r : q.toArray())

1782                 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())

1783                     q.remove(r);

1784         }

1785 

1786         tryTerminate(); // In case SHUTDOWN and now empty

1787     }

1788 

1789     /* Statistics */

1790 

1791     /**

1792      * Returns the current number of threads in the pool.

1793      *

1794      * @return the number of threads

1795      */

1796     public int getPoolSize() {

1797         final ReentrantLock mainLock = this.mainLock;

1798         mainLock.lock();

1799         try {

1800             // Remove rare and surprising possibility of

1801             // isTerminated() && getPoolSize() > 0

1802             return runStateAtLeast(ctl.get(), TIDYING) ? 0

1803                 : workers.size();

1804         } finally {

1805             mainLock.unlock();

1806         }

1807     }

1808 

1809     /**

1810      * Returns the approximate number of threads that are actively

1811      * executing tasks.

1812      *

1813      * @return the number of threads

1814      */

1815     public int getActiveCount() {

1816         final ReentrantLock mainLock = this.mainLock;

1817         mainLock.lock();

1818         try {

1819             int n = 0;

1820             for (Worker w : workers)

1821                 if (w.isLocked())

1822                     ++n;

1823             return n;

1824         } finally {

1825             mainLock.unlock();

1826         }

1827     }

1828 

1829     /**

1830      * Returns the largest number of threads that have ever

1831      * simultaneously been in the pool.

1832      *

1833      * @return the number of threads

1834      */

1835     public int getLargestPoolSize() {

1836         final ReentrantLock mainLock = this.mainLock;

1837         mainLock.lock();

1838         try {

1839             return largestPoolSize;

1840         } finally {

1841             mainLock.unlock();

1842         }

1843     }

1844 

1845     /**

1846      * Returns the approximate total number of tasks that have ever been

1847      * scheduled for execution. Because the states of tasks and

1848      * threads may change dynamically during computation, the returned

1849      * value is only an approximation.

1850      *

1851      * @return the number of tasks

1852      */

1853     public long getTaskCount() {

1854         final ReentrantLock mainLock = this.mainLock;

1855         mainLock.lock();

1856         try {

1857             long n = completedTaskCount;

1858             for (Worker w : workers) {

1859                 n += w.completedTasks;

1860                 if (w.isLocked())

1861                     ++n;

1862             }

1863             return n + workQueue.size();

1864         } finally {

1865             mainLock.unlock();

1866         }

1867     }

1868 

1869     /**

1870      * Returns the approximate total number of tasks that have

1871      * completed execution. Because the states of tasks and threads

1872      * may change dynamically during computation, the returned value

1873      * is only an approximation, but one that does not ever decrease

1874      * across successive calls.

1875      *

1876      * @return the number of tasks

1877      */

1878     public long getCompletedTaskCount() {

1879         final ReentrantLock mainLock = this.mainLock;

1880         mainLock.lock();

1881         try {

1882             long n = completedTaskCount;

1883             for (Worker w : workers)

1884                 n += w.completedTasks;

1885             return n;

1886         } finally {

1887             mainLock.unlock();

1888         }

1889     }

1890 

1891     /**

1892      * Returns a string identifying this pool, as well as its state,

1893      * including indications of run state and estimated worker and

1894      * task counts.

1895      *

1896      * @return a string identifying this pool, as well as its state

1897      */

1898     public String toString() {

1899         long ncompleted;

1900         int nworkers, nactive;

1901         final ReentrantLock mainLock = this.mainLock;

1902         mainLock.lock();

1903         try {

1904             ncompleted = completedTaskCount;

1905             nactive = 0;

1906             nworkers = workers.size();

1907             for (Worker w : workers) {

1908                 ncompleted += w.completedTasks;

1909                 if (w.isLocked())

1910                     ++nactive;

1911             }

1912         } finally {

1913             mainLock.unlock();

1914         }

1915         int c = ctl.get();

1916         String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :

1917                      (runStateAtLeast(c, TERMINATED) ? "Terminated" :

1918                       "Shutting down"));

1919         return super.toString() +

1920             "[" + rs +

1921             ", pool size = " + nworkers +

1922             ", active threads = " + nactive +

1923             ", queued tasks = " + workQueue.size() +

1924             ", completed tasks = " + ncompleted +

1925             "]";

1926     }

1927 

1928     /* Extension hooks */

1929 

1930     /**

1931      * Method invoked prior to executing the given Runnable in the

1932      * given thread.  This method is invoked by thread {@code t} that

1933      * will execute task {@code r}, and may be used to re-initialize

1934      * ThreadLocals, or to perform logging.

1935      *

1936      * <p>This implementation does nothing, but may be customized in

1937      * subclasses. Note: To properly nest multiple overridings, subclasses

1938      * should generally invoke {@code super.beforeExecute} at the end of

1939      * this method.

1940      *

1941      * @param t the thread that will run task {@code r}

1942      * @param r the task that will be executed

1943      */

1944     protected void beforeExecute(Thread t, Runnable r) { }

1945 

1946     /**

1947      * Method invoked upon completion of execution of the given Runnable.

1948      * This method is invoked by the thread that executed the task. If

1949      * non-null, the Throwable is the uncaught {@code RuntimeException}

1950      * or {@code Error} that caused execution to terminate abruptly.

1951      *

1952      * <p>This implementation does nothing, but may be customized in

1953      * subclasses. Note: To properly nest multiple overridings, subclasses

1954      * should generally invoke {@code super.afterExecute} at the

1955      * beginning of this method.

1956      *

1957      * <p><b>Note:</b> When actions are enclosed in tasks (such as

1958      * {@link FutureTask}) either explicitly or via methods such as

1959      * {@code submit}, these task objects catch and maintain

1960      * computational exceptions, and so they do not cause abrupt

1961      * termination, and the internal exceptions are <em>not</em>

1962      * passed to this method. If you would like to trap both kinds of

1963      * failures in this method, you can further probe for such cases,

1964      * as in this sample subclass that prints either the direct cause

1965      * or the underlying exception if a task has been aborted:

1966      *

1967      *  <pre> {@code

1968      * class ExtendedExecutor extends ThreadPoolExecutor {

1969      *   // ...

1970      *   protected void afterExecute(Runnable r, Throwable t) {

1971      *     super.afterExecute(r, t);

1972      *     if (t == null && r instanceof Future<?>) {

1973      *       try {

1974      *         Object result = ((Future<?>) r).get();

1975      *       } catch (CancellationException ce) {

1976      *           t = ce;

1977      *       } catch (ExecutionException ee) {

1978      *           t = ee.getCause();

1979      *       } catch (InterruptedException ie) {

1980      *           Thread.currentThread().interrupt(); // ignore/reset

1981      *       }

1982      *     }

1983      *     if (t != null)

1984      *       System.out.println(t);

1985      *   }

1986      * }}</pre>

1987      *

1988      * @param r the runnable that has completed

1989      * @param t the exception that caused termination, or null if

1990      * execution completed normally

1991      */

1992     protected void afterExecute(Runnable r, Throwable t) { }

1993 

1994     /**

1995      * Method invoked when the Executor has terminated.  Default

1996      * implementation does nothing. Note: To properly nest multiple

1997      * overridings, subclasses should generally invoke

1998      * {@code super.terminated} within this method.

1999      */

2000     protected void terminated() { }

2001 

2002     /* Predefined RejectedExecutionHandlers */

2003 

2004     /**

2005      * A handler for rejected tasks that runs the rejected task

2006      * directly in the calling thread of the {@code execute} method,

2007      * unless the executor has been shut down, in which case the task

2008      * is discarded.

2009      */

2010     public static class CallerRunsPolicy implements RejectedExecutionHandler {

2011         /**

2012          * Creates a {@code CallerRunsPolicy}.

2013          */

2014         public CallerRunsPolicy() { }

2015 

2016         /**

2017          * Executes task r in the caller's thread, unless the executor

2018          * has been shut down, in which case the task is discarded.

2019          *

2020          * @param r the runnable task requested to be executed

2021          * @param e the executor attempting to execute this task

2022          */

2023         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

2024             if (!e.isShutdown()) {

2025                 r.run();

2026             }

2027         }

2028     }

2029 

2030     /**

2031      * A handler for rejected tasks that throws a

2032      * {@code RejectedExecutionException}.

2033      */

2034     public static class AbortPolicy implements RejectedExecutionHandler {

2035         /**

2036          * Creates an {@code AbortPolicy}.

2037          */

2038         public AbortPolicy() { }

2039 

2040         /**

2041          * Always throws RejectedExecutionException.

2042          *

2043          * @param r the runnable task requested to be executed

2044          * @param e the executor attempting to execute this task

2045          * @throws RejectedExecutionException always.

2046          */

2047         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

2048             throw new RejectedExecutionException("Task " + r.toString() +

2049                                                  " rejected from " +

2050                                                  e.toString());

2051         }

2052     }

2053 

2054     /**

2055      * A handler for rejected tasks that silently discards the

2056      * rejected task.

2057      */

2058     public static class DiscardPolicy implements RejectedExecutionHandler {

2059         /**

2060          * Creates a {@code DiscardPolicy}.

2061          */

2062         public DiscardPolicy() { }

2063 

2064         /**

2065          * Does nothing, which has the effect of discarding task r.

2066          *

2067          * @param r the runnable task requested to be executed

2068          * @param e the executor attempting to execute this task

2069          */

2070         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

2071         }

2072     }

2073 

2074     /**

2075      * A handler for rejected tasks that discards the oldest unhandled

2076      * request and then retries {@code execute}, unless the executor

2077      * is shut down, in which case the task is discarded.

2078      */

2079     public static class DiscardOldestPolicy implements RejectedExecutionHandler {

2080         /**

2081          * Creates a {@code DiscardOldestPolicy} for the given executor.

2082          */

2083         public DiscardOldestPolicy() { }

2084 

2085         /**

2086          * Obtains and ignores the next task that the executor

2087          * would otherwise execute, if one is immediately available,

2088          * and then retries execution of task r, unless the executor

2089          * is shut down, in which case task r is instead discarded.

2090          *

2091          * @param r the runnable task requested to be executed

2092          * @param e the executor attempting to execute this task

2093          */

2094         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

2095             if (!e.isShutdown()) {

2096                 e.getQueue().poll();

2097                 e.execute(r);

2098             }

2099         }

2100     }

2101 }
View Code

 

线程池源码分析

(一) 创建“线程池”

下面以newFixedThreadPool()介绍线程池的创建过程。

1. newFixedThreadPool()

newFixedThreadPool()在Executors.java中定义,源码如下:

public static ExecutorService newFixedThreadPool(int nThreads) {

    return new ThreadPoolExecutor(nThreads, nThreads,

                                  0L, TimeUnit.MILLISECONDS,

                                  new LinkedBlockingQueue<Runnable>());

}

说明:newFixedThreadPool(int nThreads)的作用是创建一个线程池,线程池的容量是nThreads。
         newFixedThreadPool()在调用ThreadPoolExecutor()时,会传递一个LinkedBlockingQueue()对象,而LinkedBlockingQueue是单向链表实现的阻塞队列。在线程池中,就是通过该阻塞队列来实现"当线程池中任务数量超过允许的任务数量时,部分任务会阻塞等待"。
关于LinkedBlockingQueue的实现细节,读者可以参考"Java多线程系列--“JUC集合”08之 LinkedBlockingQueue"。

 

2. ThreadPoolExecutor()

ThreadPoolExecutor()在ThreadPoolExecutor.java中定义,源码如下:

public ThreadPoolExecutor(int corePoolSize,

                          int maximumPoolSize,

                          long keepAliveTime,

                          TimeUnit unit,

                          BlockingQueue<Runnable> workQueue) {

    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,

         Executors.defaultThreadFactory(), defaultHandler);

}

说明:该函数实际上是调用ThreadPoolExecutor的另外一个构造函数。该函数的源码如下:

public ThreadPoolExecutor(int corePoolSize,

                          int maximumPoolSize,

                          long keepAliveTime,

                          TimeUnit unit,

                          BlockingQueue<Runnable> workQueue,

                          ThreadFactory threadFactory,

                          RejectedExecutionHandler handler) {

    if (corePoolSize < 0 ||

        maximumPoolSize <= 0 ||

        maximumPoolSize < corePoolSize ||

        keepAliveTime < 0)

        throw new IllegalArgumentException();

    if (workQueue == null || threadFactory == null || handler == null)

        throw new NullPointerException();

    // 核心池大小

    this.corePoolSize = corePoolSize;

    // 最大池大小

    this.maximumPoolSize = maximumPoolSize;

    // 线程池的等待队列

    this.workQueue = workQueue;

    this.keepAliveTime = unit.toNanos(keepAliveTime);

    // 线程工厂对象

    this.threadFactory = threadFactory;

    // 拒绝策略的句柄

    this.handler = handler;

}

说明:在ThreadPoolExecutor()的构造函数中,进行的是初始化工作。
corePoolSize, maximumPoolSize, unit, keepAliveTime和workQueue这些变量的值是已知的,它们都是通过newFixedThreadPool()传递而来。下面看看threadFactory和handler对象。

 

2.1 ThreadFactory

线程池中的ThreadFactory是一个线程工厂,线程池创建线程都是通过线程工厂对象(threadFactory)来完成的。
上面所说的threadFactory对象,是通过 Executors.defaultThreadFactory()返回的。Executors.java中的defaultThreadFactory()源码如下:

public static ThreadFactory defaultThreadFactory() {

    return new DefaultThreadFactory();

}

defaultThreadFactory()返回DefaultThreadFactory对象。Executors.java中的DefaultThreadFactory()源码如下:

 

static class DefaultThreadFactory implements ThreadFactory {

    private static final AtomicInteger poolNumber = new AtomicInteger(1);

    private final ThreadGroup group;

    private final AtomicInteger threadNumber = new AtomicInteger(1);

    private final String namePrefix;



    DefaultThreadFactory() {

        SecurityManager s = System.getSecurityManager();

        group = (s != null) ? s.getThreadGroup() :

                              Thread.currentThread().getThreadGroup();

        namePrefix = "pool-" +

                      poolNumber.getAndIncrement() +

                     "-thread-";

    }



    // 提供创建线程的API。

    public Thread newThread(Runnable r) {

        // 线程对应的任务是Runnable对象r

        Thread t = new Thread(group, r,

                              namePrefix + threadNumber.getAndIncrement(),

                              0);

        // 设为“非守护线程”

        if (t.isDaemon())

            t.setDaemon(false);

        // 将优先级设为“Thread.NORM_PRIORITY”

        if (t.getPriority() != Thread.NORM_PRIORITY)

            t.setPriority(Thread.NORM_PRIORITY);

        return t;

    }

}

 

说明:ThreadFactory的作用就是提供创建线程的功能的线程工厂。
         它是通过newThread()提供创建线程功能的,下面简单说说newThread()。newThread()创建的线程对应的任务是Runnable对象,它创建的线程都是“非守护线程”而且“线程优先级都是Thread.NORM_PRIORITY”。

 

2.2 RejectedExecutionHandler

handler是ThreadPoolExecutor中拒绝策略的处理句柄。所谓拒绝策略,是指将任务添加到线程池中时,线程池拒绝该任务所采取的相应策略。
线程池默认会采用的是defaultHandler策略,即AbortPolicy策略。在AbortPolicy策略中,线程池拒绝任务时会抛出异常!
defaultHandler的定义如下:

private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();

AbortPolicy的源码如下:

public static class AbortPolicy implements RejectedExecutionHandler {

    public AbortPolicy() { }



    // 抛出异常

    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

        throw new RejectedExecutionException("Task " + r.toString() +

                                             " rejected from " +

                                             e.toString());

    }

}

 

(二) 添加任务到“线程池”

1. execute()

execute()定义在ThreadPoolExecutor.java中,源码如下:

public void execute(Runnable command) {

    // 如果任务为null,则抛出异常。

    if (command == null)

        throw new NullPointerException();

    // 获取ctl对应的int值。该int值保存了"线程池中任务的数量"和"线程池状态"信息

    int c = ctl.get();

    // 当线程池中的任务数量 < "核心池大小"时,即线程池中少于corePoolSize个任务。

    // 则通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。

    if (workerCountOf(c) < corePoolSize) {

        if (addWorker(command, true))

            return;

        c = ctl.get();

    }

    // 当线程池中的任务数量 >= "核心池大小"时,

    // 而且,"线程池处于允许状态"时,则尝试将任务添加到阻塞队列中。

    if (isRunning(c) && workQueue.offer(command)) {

        // 再次确认“线程池状态”,若线程池异常终止了,则删除任务;然后通过reject()执行相应的拒绝策略的内容。

        int recheck = ctl.get();

        if (! isRunning(recheck) && remove(command))

            reject(command);

        // 否则,如果"线程池中任务数量"为0,则通过addWorker(null, false)尝试新建一个线程,新建线程对应的任务为null。

        else if (workerCountOf(recheck) == 0)

            addWorker(null, false);

    }

    // 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。

    // 如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。

    else if (!addWorker(command, false))

        reject(command);

}

说明:execute()的作用是将任务添加到线程池中执行。它会分为3种情况进行处理:
        情况1 -- 如果"线程池中任务数量" < "核心池大小"时,即线程池中少于corePoolSize个任务;此时就新建一个线程,并将该任务添加到线程中进行执行。
        情况2 -- 如果"线程池中任务数量" >= "核心池大小",并且"线程池是允许状态";此时,则将任务添加到阻塞队列中阻塞等待。在该情况下,会再次确认"线程池的状态",如果"第2次读到的线程池状态"和"第1次读到的线程池状态"不同,则从阻塞队列中删除该任务。
        情况3 -- 非以上两种情况。在这种情况下,尝试新建一个线程,并将该任务添加到线程中进行执行。如果执行失败,则通过reject()拒绝该任务。

 

2. addWorker()

addWorker()的源码如下:

private boolean addWorker(Runnable firstTask, boolean core) {

    retry:

    // 更新"线程池状态和计数"标记,即更新ctl。

    for (;;) {

        // 获取ctl对应的int值。该int值保存了"线程池中任务的数量"和"线程池状态"信息

        int c = ctl.get();

        // 获取线程池状态。

        int rs = runStateOf(c);



        // 有效性检查

        if (rs >= SHUTDOWN &&

            ! (rs == SHUTDOWN &&

               firstTask == null &&

               ! workQueue.isEmpty()))

            return false;



        for (;;) {

            // 获取线程池中任务的数量。

            int wc = workerCountOf(c);

            // 如果"线程池中任务的数量"超过限制,则返回false。

            if (wc >= CAPACITY ||

                wc >= (core ? corePoolSize : maximumPoolSize))

                return false;

            // 通过CAS函数将c的值+1。操作失败的话,则退出循环。

            if (compareAndIncrementWorkerCount(c))

                break retry;

            c = ctl.get();  // Re-read ctl

            // 检查"线程池状态",如果与之前的状态不同,则从retry重新开始。

            if (runStateOf(c) != rs)

                continue retry;

            // else CAS failed due to workerCount change; retry inner loop

        }

    }



    boolean workerStarted = false;

    boolean workerAdded = false;

    Worker w = null;

    // 添加任务到线程池,并启动任务所在的线程。

    try {

        final ReentrantLock mainLock = this.mainLock;

        // 新建Worker,并且指定firstTask为Worker的第一个任务。

        w = new Worker(firstTask);

        // 获取Worker对应的线程。

        final Thread t = w.thread;

        if (t != null) {

            // 获取锁

            mainLock.lock();

            try {

                int c = ctl.get();

                int rs = runStateOf(c);



                // 再次确认"线程池状态"

                if (rs < SHUTDOWN ||

                    (rs == SHUTDOWN && firstTask == null)) {

                    if (t.isAlive()) // precheck that t is startable

                        throw new IllegalThreadStateException();

                    // 将Worker对象(w)添加到"线程池的Worker集合(workers)"中

                    workers.add(w);

                    // 更新largestPoolSize

                    int s = workers.size();

                    if (s > largestPoolSize)

                        largestPoolSize = s;

                    workerAdded = true;

                }

            } finally {

                // 释放锁

                mainLock.unlock();

            }

            // 如果"成功将任务添加到线程池"中,则启动任务所在的线程。 

            if (workerAdded) {

                t.start();

                workerStarted = true;

            }

        }

    } finally {

        if (! workerStarted)

            addWorkerFailed(w);

    }

    // 返回任务是否启动。

    return workerStarted;

}

说明
    addWorker(Runnable firstTask, boolean core) 的作用是将任务(firstTask)添加到线程池中,并启动该任务。
    core为true的话,则以corePoolSize为界限,若"线程池中已有任务数量>=corePoolSize",则返回false;core为false的话,则以maximumPoolSize为界限,若"线程池中已有任务数量>=maximumPoolSize",则返回false。
    addWorker()会先通过for循环不断尝试更新ctl状态,ctl记录了"线程池中任务数量和线程池状态"。
    更新成功之后,再通过try模块来将任务添加到线程池中,并启动任务所在的线程。

    从addWorker()中,我们能清晰的发现:线程池在添加任务时,会创建任务对应的Worker对象;而一个Workder对象包含一个Thread对象。(01) 通过将Worker对象添加到"线程的workers集合"中,从而实现将任务添加到线程池中。 (02) 通过启动Worker对应的Thread线程,则执行该任务。

 

3. submit()

补充说明一点,submit()实际上也是通过调用execute()实现的,源码如下:

public Future<?> submit(Runnable task) {

    if (task == null) throw new NullPointerException();

    RunnableFuture<Void> ftask = newTaskFor(task, null);

    execute(ftask);

    return ftask;

}

 

(三) 关闭“线程池”

shutdown()的源码如下:

public void shutdown() {

    final ReentrantLock mainLock = this.mainLock;

    // 获取锁

    mainLock.lock();

    try {

        // 检查终止线程池的“线程”是否有权限。

        checkShutdownAccess();

        // 设置线程池的状态为关闭状态。

        advanceRunState(SHUTDOWN);

        // 中断线程池中空闲的线程。

        interruptIdleWorkers();

        // 钩子函数,在ThreadPoolExecutor中没有任何动作。

        onShutdown(); // hook for ScheduledThreadPoolExecutor

    } finally {

        // 释放锁

        mainLock.unlock();

    }

    // 尝试终止线程池

    tryTerminate();

}

说明:shutdown()的作用是关闭线程池。

 


更多内容

1. Java多线程系列目录(共xx篇)

2. Java多线程系列--“JUC线程池”01之 线程池架构

3. Java多线程系列--“JUC线程池”02之 线程池原理(一)

 

你可能感兴趣的:(java多线程)