这篇文章不是讲令牌桶算法原理,关于原理,请参考 https://blog.csdn.net/lzw_2006/article/details/51768935
我这里只是使用golang语言来实现令牌桶算法,以及时间窗口限流。
#### 针对接口进行并发控制
如果担心接口某个时刻并发量过大了,可以细粒度地限制每个接口的 总并发/请求数
以下代码golang实现
```go
package main
import (
"fmt"
"net"
"os"
"sync/atomic"
"time"
)
var (
limiting int32 = 1 // 这就是我的令牌桶
)
func main() {
tcpAddr, err := net.ResolveTCPAddr("tcp4", "0.0.0.0:9090") //获取一个tcpAddr
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr) //监听一个端口
checkError(err)
defer listener.Close()
for {
conn, err := listener.Accept() // 在此处阻塞,每次来一个请求才往下运行handle函数
if err != nil {
fmt.Println(err)
continue
}
go handle(&conn) // 起一个单独的协程处理,有多少个请求,就起多少个协程,协程之间共享同一个全局变量limiting,对其进行原子操作。
}
}
func handle(conn *net.Conn) {
defer (*conn).Close()
n := atomic.AddInt32(&limiting, -1) // dcr 1 by atomic,获取一个令牌,总数减1。这是一个原子性的操作,并发情况下,数据不会写错。
if n < 0 {
// 令牌不够用了,限流,抛弃此次请求。
(*conn).Write([]byte("HTTP/1.1 404 NOT FOUND\r\n\r\nError, too many request, please try again."))
} else {
// 还有剩余令牌可用
time.Sleep(1 * time.Second) // 假设我们的应用处理业务用了1s的时间
(*conn).Write([]byte("HTTP/1.1 200 OK\r\n\r\nI can change the world!")) // 业务处理结束后,回复200成功。
}
atomic.AddInt32(&limiting, 1) // add 1 by atomic,业务处理完毕,放回令牌
}
// 异常报错的处理
func checkError(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)
}
}
```
limiting这个变量就是我用来限流的,把它看做令牌桶的池子吧。初始池中只有1个令牌,每一条处理请求,sleep了1秒。看看并发的效果。在一个终端中启动
```
go run example1.go
```
另外起一个终端,用golang的boom来做压测。要提前安装boom工具
```
go get github.com/rakyll/hey
go install github.com/rakyll/hey
```
然后压测
```sh
$ hey -c 10 -n 50 http://localhost:9090
Summary:
Total: 5.0246 secs
Slowest: 1.0066 secs
Fastest: 0.0008 secs
Average: 0.1023 secs
Requests/sec: 9.9510
Response time histogram:
0.001 [1] |■
0.101 [44] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.202 [0] |
0.303 [0] |
0.403 [0] |
0.504 [0] |
0.604 [0] |
0.705 [0] |
0.805 [0] |
0.906 [0] |
1.007 [5] |■■■■■
Latency distribution:
10% in 0.0011 secs
25% in 0.0013 secs
50% in 0.0014 secs
75% in 0.0044 secs
90% in 1.0021 secs
95% in 1.0061 secs
0% in 0.0000 secs
Details (average, fastest, slowest):
DNS+dialup: 0.0016 secs, 0.0008 secs, 1.0066 secs
DNS-lookup: 0.0010 secs, 0.0003 secs, 0.0022 secs
req write: 0.0002 secs, 0.0000 secs, 0.0008 secs
resp wait: 0.1022 secs, 0.0000 secs, 1.0050 secs
resp read: 0.0001 secs, 0.0000 secs, 0.0002 secs
Status code distribution:
[200] 5 responses
[404] 45 responses
```
hey命令-c表示并发数,我设为10,-n表示总共发送多少条,我发50条。
结果是只有5条返回http成功的状态码200,其他45条都失败了。这说明有得线程能竞争资源成功,有的线程竞争资源失败,这里只有5个竞争成功的。总共用时也就5.0246秒,平均速率1r/s。这种结果这和代码中令牌池只有1个令牌,而每个请求要花1s的时间的要求相吻合。说明我们现在将请求限流在1r/s,超过这个速度涌进来的请求都会被抛弃404。
注意:这里使用的是golang的协程,和线程还是有区别的,不过在这里不影响我们做测试,只要把它理解为并发就行了,协程的原理可以去搜下看看。
修改一下结果,把limiting改成10,再测试
```
......
Status code distribution:
[200] 50 responses
```
这回是恰到好处啊,刚好满足10r/s的QPS,所有的请求都成功了。
当然,这种并发控制方式简单粗暴,没有平滑处理,慎用。
#### 针对时间窗口进行并发控制
如果某个基础服务调用量很大,我们害怕它被突然的大流量打挂,所以需要限制一个窗口期内接口的请求量。下面是一种实现窗口时间并发控制的方法
我们使用缓存来存储计数器,秒数作为Key,Value代表这一秒有多少个请求。这样就限制了一秒内的并发数,过期时间设置长一些,比如两秒,保证一秒内的数据是存在的。
```go
package main
import (
"fmt"
"net"
"os"
"time"
cache "github.com/UncleBig/goCache"
)
var (
limit int = 10
c *cache.Cache
)
func main() {
c = cache.New(10*time.Minute, 30*time.Second)
tcpAddr, err := net.ResolveTCPAddr("tcp4", "0.0.0.0:9090") //获取一个tcpAddr
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr) //监听一个端口
checkError(err)
defer listener.Close()
for {
conn, err := listener.Accept()
if err != nil {
fmt.Println(err)
continue
}
go handle(&conn)
}
}
func handle(conn *net.Conn) {
defer (*conn).Close()
t := time.Now().Unix()
key := fmt.Sprintf("%d", t)
if n, found := c.Get(key); found {
num := n.(int)
fmt.Printf("key:%d num:%d\n", t, num)
if num >= limit {
(*conn).Write([]byte("HTTP/1.1 404 NOT FOUND\r\n\r\nError, too many request, please try again."))
} else {
(*conn).Write([]byte("HTTP/1.1 200 OK\r\n\r\nI can change the world!"))
c.Increment(key, 1)
}
} else {
(*conn).Write([]byte("HTTP/1.1 200 OK\r\n\r\nI can change the world!"))
c.Set(key, 1, 2 * time.Second)
}
}
func checkError(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)
}
}
```
这段代码用了缓存,所以要先下载库
```
go get -u github.com/UncleBig/goCache
```
同样的方式启动测试,先来个小测试,服务端打印日志
```sh
[root@VM_195_216_centos ~]# go run example2.go
key:1510229724 num:1 success
key:1510229724 num:2 success
key:1510229724 num:3 success
key:1510229724 num:4 success
key:1510229724 num:5 success
key:1510229724 num:6 success
key:1510229724 num:7 success
key:1510229724 num:8 success
key:1510229724 num:9 success
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
key:1510229724 num:10 failed
```
再看看我们测试用的命令
```
$ hey -c 10 -n 30 http://localhost:9090
......
Status code distribution:
[200] 10 responses
[404] 20 responses
```
结果是10条成功20条失败。看服务端 的日志发现,所有的日志都是打印的同一秒(1510229724)内的请求。当累计处理完10条限流要求的请求之后(num从1打印到10),再往后在这一秒内的请求都直接返回失败了,在这一秒内的限流取得了成功。
接下来再看看,大量持续请求的情况下,限流效果。
```sh
[root@VM_195_216_centos ~]# go run example2.go
key:1510229933 num:1 success
key:1510229933 num:2 success
key:1510229933 num:3 success
key:1510229933 num:4 success
key:1510229933 num:5 success
key:1510229933 num:6 success
key:1510229933 num:7 success
key:1510229933 num:8 success
key:1510229933 num:9 success
key:1510229933 num:10 failed
key:1510229933 num:10 failed
......
key:1510229933 num:10 failed
key:1510229933 num:10 failed
key:1510229934 num:1 success
key:1510229934 num:2 success
key:1510229934 num:3 success
key:1510229934 num:4 success
key:1510229934 num:5 success
key:1510229934 num:6 success
key:1510229934 num:7 success
key:1510229934 num:8 success
key:1510229934 num:9 success
key:1510229934 num:10 failed
key:1510229934 num:10 failed
......
key:1510229934 num:10 failed
key:1510229934 num:10 failed
key:1510229935 num:1 success
key:1510229935 num:2 success
key:1510229935 num:3 success
key:1510229935 num:4 success
key:1510229935 num:5 success
key:1510229935 num:6 success
key:1510229935 num:7 success
key:1510229935 num:8 success
key:1510229935 num:9 success
key:1510229935 num:10 failed
key:1510229935 num:10 failed
......
key:1510229935 num:10 failed
key:1510229935 num:10 failed
key:1510229936 num:1 success
key:1510229936 num:2 success
key:1510229936 num:3 success
key:1510229936 num:4 success
key:1510229936 num:5 success
key:1510229936 num:6 success
key:1510229936 num:7 success
key:1510229936 num:8 success
key:1510229936 num:9 success
key:1510229936 num:10 failed
key:1510229936 num:10 failed
......
```
测试命令
```sh
$ hey -c 10 -n 10000 http://localhost:9090
Summary:
Total: 2.9792 secs
......
Status code distribution:
[200] 40 responses
[404] 9937 responses
```
这次总共花了近3秒时间,发了1w条请求,由于日志打印太多了,截取部分有代表性的。可以看到经历了3秒,每1秒内都只成功10条,接下来到下一秒之前的请求都是失败的。3秒总共成功了40条,按理说应该30条,可能边界值那几毫秒控制的不是很精准,这个误差可以容忍,还是能达到限流的理想效果。
****
> 创建于 2018-09-08 北京,更新于 2019-05-23 北京
>该文章在以下平台同步
>- HICOOL.TOP: http://www.hicool.top/article/5ce65138215b583cdd068b48
>- CSDN:
>- 简书: https://www.jianshu.com/p/9032c6f41f1e