1063. Set Similarity
Given two sets of integers, the similarity of the sets is defined to be Nc/Nt*100%, where Nc is the number of distinct common numbers shared by the two sets, and Nt is the total number of distinct numbers in the two sets. Your job is to calculate the similarity of any given pair of sets.
Input Specification:
Each input file contains one test case. Each case first gives a positive integer N (<=50) which is the total number of sets. Then N lines follow, each gives a set with a positive M (<=104) and followed by M integers in the range [0, 109]. After the input of sets, a positive integer K (<=2000) is given, followed by K lines of queries. Each query gives a pair of set numbers (the sets are numbered from 1 to N). All the numbers in a line are separated by a space.
Output Specification:
For each query, print in one line the similarity of the sets, in the percentage form accurate up to 1 decimal place.
Sample Input:3
3 99 87 101
4 87 101 5 87
7 99 101 18 5 135 18 99
2
1 2
1 3
Sample Output:
50.0%
33.3%
主要思想:考虑到每一个集合中可能存在重复的数,而且需要做大量的查找操作(找并集时对集合a的每个元素判断是否存在于集合b),很容易想到stl库中的set容器,因为set中不存在重复元素,而且查找操作很快。对于每次查找操作,设置初始值nc为 0, nt 为集合 b 的大小,集合 a 的每个元素,如果存在于集合 b,则 nc+1;如果不存在,则 nt+1(注意:如果用两集合大小之和 减去 两集合交集大小 来计算 nt,可能会出现超时)。
#pragma warning(disable: 4786) #include#include #include using namespace std; int main(void) { int n, i, j; scanf("%d", &n); vector > vec(n); set ::iterator iter; int m, num; for (i = 0; i < n; i++) { scanf("%d", &m); for (j = 0; j < m; j++) { scanf("%d", &num); vec[i].insert(num); } } int k, a, b; scanf("%d", &k); for (i = 0; i < k; i++) { scanf("%d%d", &a, &b); int nc = 0, nt = vec[b-1].size(); for (iter = vec[a-1].begin(); iter != vec[a-1].end(); iter++) { if (vec[b-1].count(*iter)) //if (vec[b-1].find(*iter) != vec[b-1].end()) nc++; else nt++; } // nt = vec[a-1].size() + vec[b-1].size() - nc; //这样计算可能会超时 printf("%.1f%%\n", nc * 1.0 / nt * 100); } return 0; }
爬虫中的set容器解决这个问题就更容易了,& 和 | 分别对应交集和并集,唯一不足的就是有一个用例超时了。
n = int(input()) L1 = [] for i in range(n): st = input() L2 = st.split(' ') L1.append(set(L2[1:])) k = int(input()) for i in range(k): pair = input().split(' ') x, y = int(pair[0]), int(pair[1]) similarity = len(L1[x-1] & L1[y-1]) / len(L1[x-1] | L1[y-1]) * 100 print('%.1f%%' % (similarity)