F = Q q 4 π ε 0 r 2 F=\frac{Qq}{4\pi \varepsilon _0 r^{2}} F=4πε0r2Qq
F = q E E = Q 4 π ε 0 r 2 F=qE\\ E=\frac{Q}{4\pi \varepsilon_0 r^2} F=qEE=4πε0r2Q
E = Q 4 π ε 0 r 2 E=\frac{Q}{4\pi \varepsilon_0 r^2} E=4πε0r2Q
E = δ 2 ε 0 E=\frac{\delta}{2\varepsilon_0} E=2ε0δ
E = { 0 , ( r < R ) Q 4 π ε 0 r 2 , ( r > R ) E=\begin{cases} 0,(r<R)\\ \frac{Q}{4\pi \varepsilon_0 r^2},(r>R) \end{cases} E={0,(r<R)4πε0r2Q,(r>R)
E = λ 2 π ε 0 r E=\frac{\lambda}{{2\pi \varepsilon_0 r}} E=2πε0rλ
E = { 0 , ( r < R ) λ 2 π ε 0 r , ( r > R ) E=\begin{cases} 0,(r<R)\\ \frac{\lambda}{2\pi \varepsilon_0 r},(r>R) \end{cases} E={0,(r<R)2πε0rλ,(r>R)
Φ = E . S \Phi=E.S Φ=E.S
Φ = ∫ s E . d s = ∑ q ε 0 \Phi=\int_sE.ds=\frac{\sum q}{\varepsilon_0} Φ=∫sE.ds=ε0∑q
V A = ∫ ∞ E . d l = 1 4 π ε 0 ∫ d q r V_A=\int_\infty E.dl=\frac{1}{4\pi \varepsilon_0}\int\frac{dq}{r} VA=∫∞E.dl=4πε01∫rdq
E = Q 4 π ε 0 r E=\frac{Q}{4\pi \varepsilon_0 r} E=4πε0rQ
V = { Q 4 π ε 0 R , ( r < R ) Q 4 π ε 0 r , ( r > R ) V=\begin{cases} \frac{Q}{4\pi \varepsilon_0 R},(r<R)\\ \frac{Q}{4\pi \varepsilon_0 r},(r>R) \end{cases} V={4πε0RQ,(r<R)4πε0rQ,(r>R)
U = E d U=Ed U=Ed
∫ D . d s = ∑ q 0 D = ε 0 ε r E = ε E \int D.ds=\sum q_0\\ D=\varepsilon_0 \varepsilon_rE=\varepsilon E ∫D.ds=∑q0D=ε0εrE=εE
C = Q U U = E d C=\frac{Q}{U}\\ U=Ed C=UQU=Ed
C = ε 0 ε r S d E = δ ε 0 ε r C=\frac{\varepsilon_0\varepsilon_rS}{d}\\ E=\frac{\delta}{\varepsilon_0\varepsilon_r} C=dε0εrSE=ε0εrδ
C = ε 0 S d E = δ ε 0 C=\frac{\varepsilon_0S}{d}\\ E=\frac{\delta}{\varepsilon_0} C=dε0SE=ε0δ
U = ∫ R 1 R 2 E . d r = λ 2 π ε 0 ε r ln R 2 R 1 U=\int_{R_1}^{R_2}E.dr=\frac{\lambda}{2\pi\varepsilon_0\varepsilon_r}\ln\frac{R_2}{R_1} U=∫R1R2E.dr=2πε0εrλlnR1R2
W e = 1 2 C U 2 = Q 2 2 C = 1 2 Q U W_e=\frac{1}{2}CU^2=\frac{Q^2}{2C}=\frac{1}{2}QU We=21CU2=2CQ2=21QU
W e = 1 2 ε E W_e=\frac{1}{2}\varepsilon E We=21εE
B = μ I 4 π ∫ d l × e r r 2 B=\frac{\mu I}{4\pi}\int\frac{dl\times e_r}{r^2} B=4πμI∫r2dl×er
B = μ I 2 π r B=\frac{\mu I}{2\pi r} B=2πrμI
B = μ I 4 π r 延 长 线 B = 0 B=\frac{\mu I}{4\pi r}\\ 延长线\\ B=0 B=4πrμI延长线B=0
B = μ I 2 R B=\frac{\mu I}{2R} B=2RμI
B = μ I 4 R B=\frac{\mu I}{4R} B=4RμI
B = μ n I 注 : n 为 单 位 长 度 的 匝 数 B=\mu nI\\ 注:n为单位长度的匝数 B=μnI注:n为单位长度的匝数
m = N I S m=NIS m=NIS
M = m × B M=m\times B M=m×B
Φ = B . S \Phi=B.S Φ=B.S
F = B L I s i n α F=BLIsin\alpha F=BLIsinα
∫ l B . d l = μ ∑ i = 1 n I i \int_lB.dl=\mu \sum_{i=1}^{n}I_i ∫lB.dl=μi=1∑nIi
F m = q V × B q V B = m V 2 R R = m V q B T = 2 π m q B F_m=qV\times B\\ qVB=\frac{mV^2}{R}\\ R=\frac{mV}{qB}\\ T=\frac{2\pi m}{qB} Fm=qV×BqVB=RmV2R=qBmVT=qB2πm
ε i = ∫ o p E r . d l = ∫ o p ( V × B ) d l \varepsilon_i=\int_{op}E_r.dl=\int_{op}(V\times B)dl εi=∫opEr.dl=∫op(V×B)dl
ε i = B v l \varepsilon_i=Bvl εi=Bvl
ε i = 1 2 B ω l 2 \varepsilon_i=\frac{1}{2}B\omega l^2 εi=21Bωl2
ε i = ∫ i E r . d l = − d Φ d t \varepsilon_i=\int_{i}E_r.dl=-\frac{d\Phi}{dt} εi=∫iEr.dl=−dtdΦ
{ ∫ l H . d l = ∑ I B = μ 0 μ r H = μ H \begin{cases} \int_lH.dl=\sum I\\ B=\mu_0\mu_rH=\mu H \end{cases} {∫lH.dl=∑IB=μ0μrH=μH
Φ = L I \Phi=LI Φ=LI
ε i = − L d I d t \varepsilon_i=-L\frac{dI}{dt} εi=−LdtdI
W m = 1 2 L I 2 W_m=\frac{1}{2}LI^2 Wm=21LI2
W m = B 2 2 μ = 1 2 μ H 2 = 1 2 B H W_m=\frac{B^2}{2\mu}=\frac{1}{2}\mu H^2=\frac{1}{2}BH Wm=2μB2=21μH2=21BH
L = μ n 2 V Φ = B . S = L I V = S L L=\mu n^2V\\ \Phi=B.S=LI\\ V=SL\\ L=μn2VΦ=B.S=LIV=SL
∫ l E . d l = − ∫ s δ B δ t . d s \int_lE.dl=-\int_s\frac{\delta B}{\delta t}.ds ∫lE.dl=−∫sδtδB.ds
∫ s B . d s = 0 \int_sB.ds=0 ∫sB.ds=0
∫ c D . d s = μ ρ d v \int_cD.ds=\mu\rho dv ∫cD.ds=μρdv
∫ l H . d l = ∫ s ( j + δ D δ t ) . d s \int_l H.dl=\int_s(j+\frac{\delta D}{\delta t}).ds ∫lH.dl=∫s(j+δtδD).ds