Ubuntu 16.04 + Cuda 10.0+ cudnn7.5.1.10+tensorflow-gpu 安装笔记

1. gcc version 5.4 Lucky,No need to downgrade!

2. 下载 CUDA toolkit 10.0 

https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal

3. 停止 lightdm服务, 就是把图形界面给关了 

service lightdm stop # turn off the lightdm service

4. 安装下载的CUDA包(内含显卡驱动) 

sudo sh cuda_10.0.130_410.48_linux.run

5. 安装成功以后记得更新路径设置, 我是更新的~/.bashrc这个文件.

Please make sure that

  • PATH includes /usr/local/cuda-10.0/bin
  • LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64

    这里记一下,CUDA安装完以后会告诉你将来想删除CUDA怎么删:

 To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin To uninstall the NVIDIA Driver, run nvidia-uninstall

6. 登陆进NVIDIA developer 网站, 下载 cudnn7.5.1 for CUDA 10.0

https://developer.nvidia.com/rdp/cudnn-download#a-collapse751-10

7. 解压缩然后复制

tar -xvzf cudnn-10.0-linux-x64-v7.5.1.10.tgz 
sudo cp cuda/include/cudnn.h /usr/local/cuda/include # 复制到 include 中 
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 # 复制到 lib64 中 
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* # 将头文件复制进去

8. 更新路径

Make sure:

  • LD_LIBRARY_PATH includes /usr/local/cuda/extras/CUPTI/lib64

9. 如果是编辑 ~/.bashrc文件来更新路径的,记得最后source一下

source ~/.bashrc

10. 安装 Anaconda3, 很简单,目前最新的是支持python 3.7 

下载地址:

https://www.anaconda.com/distribution/#download-section

sudo ./Anaconda3-xxxxxxxx-Linux-x86_64.sh

版本号细节记不得了, 用xxxxxxxxx代替。

最后会询问是否把anaconda的bin添加到用户的环境变量中,选择yes.

记得:

source ~/.bashrc

11. 安装tensorflow-gpu, 这里需要注意一下python版本

创建tensorflow环境:

conda create -n tensorflow python=3.5

这里需要指定python版本是3.5, 我自己之前没有指定,后来在装tensorflow-gpu的时候就遇到报错:

ERROR: Could not find a version that satisfies the requirement heras (from versions: none)
ERROR: No matching distribution found for heras

创建以后激活tensorflow环境,新版本不需要使用source activate命令了,直接使用:

conda activate tensorflow

进入环境以后, 安装tensorflow-gpu 和 keras

pip install tensorflow-gpu keras

验证是否成功:

python -c "import keras"

如果出现:

Using TensorFlow backend.

即证明安装成功

最后记得恢复lightdm service:

service lightdm start

 

你可能感兴趣的:(笔记)