ES 查询优化(一)

1、能用term就不用match_phrase

The Lucene nightly benchmarks show that a simple term query is about 10 times as fast as a phrase query, and about 20 times as fast as a proximity query (a phrase query with slop).

term查询比match_phrase性能要快10倍,比带slop的match_phrase快20倍。

GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": "quick"
        }
    }
}

变为

GET /my_index/my_type/_search
{
    "query": {
        "term": {
            "title": "quick"
        }
    }
}

2、如果查询条件与文档排序无关,则一定要用filter,既不用参与分数计算,还能缓存数据,加快下次查询。

比如说要查询类型为Ford,黄色的,名字包含dev的汽车,一般的查询语句应该如下:

GET /my_index/my_type/_search
{
    "bool": {
        "must": [
            {
                "term": {
                    "type": "ford"
                }
            },
            {
                "term": {
                    "color": "yellow"
                }
            },
            {
                "term": {
                    "name": "dev"
                }
            }
        ]
    }
}

上述查询中类型和颜色同样参与了文档排名得分的计算,但是由于类型和颜色仅作为过滤条件,计算得分至于name的匹配相关。因此上述的查询是不合理且效率不高的。

GET /my_index/my_type/_search
{
    "bool": {
        "must": {
            "term": {
                "name": "dev"
            }
        },
        "filter": [
        {
            "term": {
                "type": "ford"
            }
        },
        {
            "term": {
                "color": "yellow"
            }
        }]
    }
}

3、如果对查出的数据的顺序没有要求,则可按照_doc排序,取数据时按照插入的顺序返回。

_doc has no real use-case besides being the most efficient sort order. So if you don’t care about the order in which documents are returned, then you should sort by _doc. This especially helps when scrolling. _doc to sort by index order.

GET /my_index/my_type/_search
{
    "query": {
        "term": {
            "name": "dev"
        }
    },
    "sort":[
        "_doc"
    ]
}

4、随机取n条(n>=10000)数据

1)可以利用ES自带的方法random score查询。缺点慢,消耗内存。

GET /my_index/my_type/_search
{
    "size": 10000,
    "query": {
        "function_score": {
            "query": {
                "term": {
                    "name": "dev"
                }
            },
            "random_score": {
                
            }
        }
    }
}

2)可以利用ES的脚本查询。缺点比random score少消耗点内存,但比random score慢。

GET /my_index/my_type/_search
{
    "query": {
        "term": {
            "name": "dev"
        }
    },
    "sort": {
        "_script": {
            "type": "number",
            "script": {
                "lang": "painless",
                "inline": "Math.random()"
            },
            "order": "asc"
        }
    }
}

3)插入数据时,多加一个字段mark,该字段的值随机生成。查询时,对该字段排序即可。

GET /my_index/my_type/_search
{
    "query": {
        "term": {
            "name": "dev"
        }
    },
    "sort":[
        "mark"
    ]
}

5、range Aggregations时耗时太长

{
    "aggs" : {
        "price_ranges" : {
            "range" : {
                "field" : "price",
                "ranges" : [
                    { "from" : 10, "to" : 50 },
                    { "from" : 50, "to" : 70 },
                    { "from" : 70, "to" : 100 }
                ]
            }
        }
    }
}

如例子所示,我们对[10,50),[50,70),[70,100)三个区间做了聚合操作。因为涉及到比较操作,数据量较大的情况下,可能会比较慢。 解决方案:在插入时,将要聚合的区间以keyword的形式写入索引中,查询时,对该字段做聚合即可。

假设price都小于100,插入的字段为mark,mark的值为10-50, 50-70, 70-100。
{
    "aggs" : {
        "genres" : {
            "terms" : { "field" : "mark" }
        }
    }
}

6、查询空字符串

如果是要查字段是否存在或丢失,用Exists Query查询即可(exists, must_not exits)。

GET /_search
{
    "query": {
        "exists" : { "field" : "user" }
    }
}

GET /_search
{
    "query": {
        "bool": {
            "must_not": {
                "exists": {
                    "field": "user"
                }
            }
        }
    }
}

这里指的是字段存在,且字段为“”的field。

curl localhost:9200/customer/_search?pretty -d'{
    "size": 5,
    "query": {
        "bool": {
            "must": {
                "script": {
                    "script": {
                        "inline": "doc['\''strnickname'\''].length()<1",
                        "lang": "painless"
                    }
                }
            }
        }
    }
}'

你可能感兴趣的:(Elasticsearch)