[pysyft-004]联邦学习pysyft从入门到精通--三个节点训练CNN网络

import torch
if torch.cuda.is_available():
        torch.set_default_tensor_type(torch.cuda.FloatTensor)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

import syft as sy  # <-- NEW: import the Pysyft library

"""
Part 06 - Federated Learning on MNIST using a CNN
http://localhost:8888/notebooks/git-home/github/PySyft/examples/tutorials/Part%2006%20-%20Federated%20Learning%20on%20MNIST%20using%20a%20CNN.ipynb
"""

"""
本例演示联邦学习CNN

"""
class Arguments():
    def __init__(self):
        self.batch_size = 64
        self.test_batch_size = 1000
        self.epochs = 10
        self.lr = 0.01
        self.momentum = 0.5
        self.no_cuda = False
        self.seed = 1
        self.log_interval = 30
        self.save_model = False

#pysyft的hook
hook = sy.TorchHook(torch)
#创建虚拟节点
bob = sy.VirtualWorker(hook, id="bob")
alice = sy.VirtualWorker(hook, id="alice")

#配置参数
args = Arguments()
#使用cuda
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
#设置worker
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

#联邦数据,数据分布在不同工作节点上
federated_train_loader = sy.FederatedDataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([transforms.ToTensor(),
                                                     transforms.Normalize((0.1307,), (0.3081,))
                   ]))
        .federate((bob, alice)),
        batch_size=args.batch_size, shuffle=True, **kwargs)

test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False,
                       transform=transforms.Compose([transforms.ToTensor(),
                                                     transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)


#深度网络结构
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

#训练
def train(args, model, device, federated_train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(federated_train_loader):
        #把模型发给联邦学习节点
        model.send(data.location)
        data, target = data.to(device), target.to(device)
        #把grad清零
        optimizer.zero_grad()
        output = model(data)
        #计算损失
        loss = F.nll_loss(output, target)
        #计算梯度
        loss.backward()
        optimizer.step()
        #从远程节点更新模型
        model.get()
        if batch_idx % args.log_interval == 0:
            loss = loss.get()
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, len(federated_train_loader) * args.batch_size,
                100. * batch_idx / len(federated_train_loader), loss.item()))


#测试
def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
                    test_loss, correct, len(test_loader.dataset),
                    100. * correct / len(test_loader.dataset)))


if __name__ == '__main__':
    #模型初始化
    model = Net().to(device)
    #优化器
    optimizer = optim.SGD(model.parameters(), lr=args.lr)
    #求解
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, federated_train_loader, optimizer, epoch)
        test(args, model, device, test_loader)
    #训练结果存盘
    if (args.save_model):
        torch.save(model.state_dict(), "mnist_cnn.pt")

 

你可能感兴趣的:([pysyft-004]联邦学习pysyft从入门到精通--三个节点训练CNN网络)