机器学习之SVM实例手写识别

在第二章使用KNN处理手写识别问题,这里我们使用支持向量机。优点是只用少量的样本(只保留支持向量)但是能获得可比的效果
首先加载第二章的图片转换部分代码

图片转换代码

def img2vector(filename):
    """
    将32x32的二进制图像转换为1x1024向量。
    Parameters:
        filename - 文件名
    Returns:
        returnVect - 返回的二进制图像的1x1024向量
    """
    returnVect = np.zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect
def loadImages(dirName):
    """
    加载图片
    Parameters:
        dirName - 文件夹的名字
    Returns:
        trainingMat - 数据矩阵
        hwLabels - 数据标签
    """
    from os import listdir
    hwLabels = []
    trainingFileList = listdir('trainingDigits')           
    m = len(trainingFileList)
    trainingMat = np.zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('trainingDigits%s' % fileNameStr)
    return trainingMat, hwLabels 

核函数和数据结构定义

class optStruct:
    """
    数据结构,维护所有需要操作的值
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
    """
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn                                #数据矩阵
        self.labelMat = classLabels                        #数据标签
        self.C = C                                         #松弛变量
        self.tol = toler                                 #容错率
        self.m = np.shape(dataMatIn)[0]                 #数据矩阵行数
        self.alphas = np.mat(np.zeros((self.m,1)))         #根据矩阵行数初始化alpha参数为0   
        self.b = 0                                         #初始化b参数为0
        self.eCache = np.mat(np.zeros((self.m,2)))         #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
        self.K = np.mat(np.zeros((self.m,self.m)))        #初始化核K
        for i in range(self.m):                            #计算所有数据的核K
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def kernelTrans(X, A, kTup):
    """
    通过核函数将数据转换更高维的空间
    Parameters:
        X - 数据矩阵
        A - 单个数据的向量
        kTup - 包含核函数信息的元组
    Returns:
        K - 计算的核K
    """
    m,n = np.shape(X)
    K = np.mat(np.zeros((m,1)))
    if kTup[0] == 'lin': K = X * A.T                       #线性核函数,只进行内积。
    elif kTup[0] == 'rbf':                                 #高斯核函数,根据高斯核函数公式进行计算
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = np.exp(K/(-1*kTup[1]**2))                     #计算高斯核K
    else: raise NameError('核函数无法识别')
    return K                                             #返回计算的核K

辅助函数

def calcEk(oS, k):
    """
    计算误差
    Parameters:
        oS - 数据结构
        k - 标号为k的数据
    Returns:
        Ek - 标号为k的数据误差
    """
    fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJrand(i, m):
    """
    函数说明:随机选择alpha_j的索引值

    Parameters:
        i - alpha_i的索引值
        m - alpha参数个数
    Returns:
        j - alpha_j的索引值
    """
    j = i                                 #选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

def selectJ(i, oS, Ei):
    """
    内循环启发方式2
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
        Ei - 标号为i的数据误差
    Returns:
        j, maxK - 标号为j或maxK的数据的索引值
        Ej - 标号为j的数据误差
    """
    maxK = -1; maxDeltaE = 0; Ej = 0                         #初始化
    oS.eCache[i] = [1,Ei]                                      #根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:,0].A)[0]        #返回误差不为0的数据的索引值
    if (len(validEcacheList)) > 1:                            #有不为0的误差
        for k in validEcacheList:                           #遍历,找到最大的Ek
            if k == i: continue                             #不计算i,浪费时间
            Ek = calcEk(oS, k)                                #计算Ek
            deltaE = abs(Ei - Ek)                            #计算|Ei-Ek|
            if (deltaE > maxDeltaE):                        #找到maxDeltaE
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej                                        #返回maxK,Ej
    else:                                                   #没有不为0的误差
        j = selectJrand(i, oS.m)                            #随机选择alpha_j的索引值
        Ej = calcEk(oS, j)                                    #计算Ej
    return j, Ej                                             #j,Ej

def updateEk(oS, k):
    """
    计算Ek,并更新误差缓存
    Parameters:
        oS - 数据结构
        k - 标号为k的数据的索引值
    Returns:
        无
    """
    Ek = calcEk(oS, k)                                        #计算Ek
    oS.eCache[k] = [1,Ek]                                    #更新误差缓存


def clipAlpha(aj,H,L):
    """
    修剪alpha_j
    Parameters:
        aj - alpha_j的值
        H - alpha上限
        L - alpha下限
    Returns:
        aj - 修剪后的alpah_j的值
    """
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

线性SMO算法

def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
    """
    完整的线性SMO算法
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        maxIter - 最大迭代次数
        kTup - 包含核函数信息的元组
    Returns:
        oS.b - SMO算法计算的b
        oS.alphas - SMO算法计算的alphas
    """
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup)                #初始化数据结构
    iter = 0                                                                                         #初始化当前迭代次数
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):                            #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
        alphaPairsChanged = 0
        if entireSet:                                                                                #遍历整个数据集                           
            for i in range(oS.m):       
                alphaPairsChanged += innerL(i,oS)                                                    #使用优化的SMO算法
                print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:                                                                                         #遍历非边界值
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]                        #遍历不在边界0和C的alpha
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet:                                                                                #遍历一次后改为非边界遍历
            entireSet = False
        elif (alphaPairsChanged == 0):                                                                #如果alpha没有更新,计算全样本遍历
            entireSet = True 
        print("迭代次数: %d" % iter)
    return oS.b,oS.alphas         

优化算法

def innerL(i, oS):
    """
    优化的SMO算法
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
    Returns:
        1 - 有任意一对alpha值发生变化
        0 - 没有任意一对alpha值发生变化或变化太小
    """
    #步骤1:计算误差Ei
    Ei = calcEk(oS, i)
    #优化alpha,设定一定的容错率。
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        #使用内循环启发方式2选择alpha_j,并计算Ej
        j,Ej = selectJ(i, oS, Ei)
        #保存更新前的aplpha值,使用深拷贝
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        #步骤2:计算上下界L和H
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            print("L==H")
            return 0
        #步骤3:计算eta
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
        if eta >= 0:
            print("eta>=0")
            return 0
        #步骤4:更新alpha_j
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
        #步骤5:修剪alpha_j
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        #更新Ej至误差缓存
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("alpha_j变化太小")
            return 0
        #步骤6:更新alpha_i
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        #更新Ei至误差缓存
        updateEk(oS, i)
        #步骤7:更新b_1和b_2
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        #步骤8:根据b_1和b_2更新b
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else:
        return 0

测试函数

该函数和上一节的代码很像,只是这里调用的是loadImages()函数来获得类别标签和数据,另外一点就是这里的函数元组kTup是输入参数,而在testRbf()中默认使用rbf核函数

def testDigits(kTup=('rbf', 10)):
    """
    测试函数
    Parameters:
        kTup - 包含核函数信息的元组
    Returns:
        无
    """
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10, kTup)
    datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
    svInd = np.nonzero(alphas.A>0)[0]
    sVs=datMat[svInd]
    labelSV = labelMat[svInd];
    print("支持向量个数:%d" % np.shape(sVs)[0])
    m,n = np.shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("训练集错误率: %.2f%%" % (float(errorCount)/m))
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
    m,n = np.shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1   
    print("测试集错误率: %.2f%%" % (float(errorCount)/m))
测试
testDigits(kTup=('rbf', 10))
输出
L==H
全样本遍历:第0次迭代 样本:0, alpha优化次数:0
全样本遍历:第0次迭代 样本:1, alpha优化次数:1
全样本遍历:第0次迭代 样本:2, alpha优化次数:2
全样本遍历:第0次迭代 样本:3, alpha优化次数:3
全样本遍历:第0次迭代 样本:4, alpha优化次数:4
全样本遍历:第0次迭代 样本:5, alpha优化次数:5
L==H
全样本遍历:第0次迭代 样本:6, alpha优化次数:5
全样本遍历:第0次迭代 样本:7, alpha优化次数:6
全样本遍历:第0次迭代 样本:8, alpha优化次数:7
全样本遍历:第0次迭代 样本:9, alpha优化次数:8
全样本遍历:第0次迭代 样本:10, alpha优化次数:9
..............
.............
................
alpha_j变化太小
全样本遍历:第3次迭代 样本:1928, alpha优化次数:0
alpha_j变化太小
全样本遍历:第3次迭代 样本:1929, alpha优化次数:0
alpha_j变化太小
全样本遍历:第3次迭代 样本:1930, alpha优化次数:0
alpha_j变化太小
全样本遍历:第3次迭代 样本:1931, alpha优化次数:0
全样本遍历:第3次迭代 样本:1932, alpha优化次数:0
alpha_j变化太小
全样本遍历:第3次迭代 样本:1933, alpha优化次数:0
迭代次数: 4
支持向量个数:298
训练集错误率: 0.00%
测试集错误率: 0.00%
  • 好了,svm完美收官!
    源码

你可能感兴趣的:(机器学习之SVM实例手写识别)